
Introduction to English Linguistics
13: Natural Language Processing

P. S. Langeslag



Concepts



String

A sequence of text as typically assigned to a (constant or) variable:

>>> phrase = 'the tortoise and the hare'
>>> print(phrase)
'the tortoise and the hare'

In Python, any string is also a list of characters:

>>> if 'i' in phrase:
>>> phrase.index('i')
9

Python counts indices (but not tallies) from 0:

>>> phrase[1]
'h'



String

A sequence of text as typically assigned to a (constant or) variable:

>>> phrase = 'the tortoise and the hare'
>>> print(phrase)
'the tortoise and the hare'

In Python, any string is also a list of characters:

>>> if 'i' in phrase:
>>> phrase.index('i')
9

Python counts indices (but not tallies) from 0:

>>> phrase[1]
'h'



String

A sequence of text as typically assigned to a (constant or) variable:

>>> phrase = 'the tortoise and the hare'
>>> print(phrase)
'the tortoise and the hare'

In Python, any string is also a list of characters:

>>> if 'i' in phrase:
>>> phrase.index('i')
9

Python counts indices (but not tallies) from 0:

>>> phrase[1]
'h'



Language Arithmetic

>>> from collections import Counter
>>> phrase = 'the tortoise and the hare'
>>> Counter(phrase)
Counter({'t': 4, 'e': 4, ' ': 4, 'h': 3, 'o': 2, 'r': 2, 'a': 2, 'i': 1,
's': 1, 'n': 1, 'd': 1})



Scrabble Design Made Easy

(See frequency.py)

Pop quiz: why is <p> such a rare letter in Old English?



Scrabble Design Made Easy

(See frequency.py)

Pop quiz: why is <p> such a rare letter in Old English?



What About Boggle?

(See oedistribution.py)



(Word) Token
When reading a text (corpus) sequentially, each instance of a word form you encounter is its
own token. We may write or employ functions to tokenize a text:

>>> phrase = 'the tortoise and the hare'
>>> tokens = phrase.split()
>>> tokens
['the', 'tortoise', 'and', 'the', 'hare']

>>> len(tokens)
5
>>> tokens.sort()
>>> tokens
['and', 'hare', 'the', 'the', 'tortoise']



(Word) Token
When reading a text (corpus) sequentially, each instance of a word form you encounter is its
own token. We may write or employ functions to tokenize a text:

>>> phrase = 'the tortoise and the hare'
>>> tokens = phrase.split()
>>> tokens
['the', 'tortoise', 'and', 'the', 'hare']

>>> len(tokens)
5
>>> tokens.sort()
>>> tokens
['and', 'hare', 'the', 'the', 'tortoise']



(Word) Token
When reading a text (corpus) sequentially, each instance of a word form you encounter is its
own token. We may write or employ functions to tokenize a text:

>>> phrase = 'the tortoise and the hare'
>>> tokens = phrase.split()
>>> tokens
['the', 'tortoise', 'and', 'the', 'hare']

>>> len(tokens)
5
>>> tokens.sort()
>>> tokens
['and', 'hare', 'the', 'the', 'tortoise']



Bag of Words

A model storing information on each word type (i.e. form) and its frequency in a text (corpus),
but discarding syntax and word order.

>>> Counter(tokens)
Counter({'the': 2, 'tortoise': 1, 'and': 1, 'hare': 1})



Term; or (Word) Type

Distinct orthographical form (i.e. spelling) in the corpus.

>>> tokens = ['the', 'tortoise', 'and', 'the', 'hare']
>>> terms = list(dict.fromkeys(tokens))
>>> len(terms)
4
>>> terms
['the', 'tortoise', 'and', 'hare']



Zipf ’s Law
A word token’s frequency in a natural corpus f(r) is
inversely proportional to its rank (r) in the word
frequency table.

𝑓(𝑟) ∝ 1
(𝑟 + 𝛽)𝛼

where 𝛼 ≈ 1 and 𝛽 ≈ 2.7

Figure 1: Frequency/rank log plot for the
first 10 mln words in 30 Wikipedias
(CC-BY-SA Sergio Jimenez)

https://en.wikipedia.org/wiki/File:Zipf_30wiki_en_labels.png


Zipf ’s Law
A word token’s frequency in a natural corpus f(r) is
inversely proportional to its rank (r) in the word
frequency table.

𝑓(𝑟) ∝ 1
(𝑟 + 𝛽)𝛼

where 𝛼 ≈ 1 and 𝛽 ≈ 2.7

Figure 1: Frequency/rank log plot for the
first 10 mln words in 30 Wikipedias
(CC-BY-SA Sergio Jimenez)

https://en.wikipedia.org/wiki/File:Zipf_30wiki_en_labels.png


Zipf ’s Law in Natural Languages

Brown Corpus tallies (from Lane, Natural Language Processing in Action, p. 87):
1. the: 69971
2. of: 36412
3. and: 28853
4. to: 26158
5. a: 23195
6. in: 21337
7. that: 10594
8. is: 10109
9. was: 9815
10. he: 9548

(etc.)



What’s the Use of Zipf ’s Law in Natural Languages?

▶ Topic modelling: we know what a document is about not by finding the most frequent
words, but by finding the words that transgress Zipf ’s Law the most (TF-IDF).

▶ This is how search engines work!



Stem

Linguistic Definition
The base of a given word form, to which inflectional information is added.

NLP Definition
The base to which a given type may be reduced (“stemming”) by stripping away (known)
inflectional (and sometimes derivational) information, whether or not the resulting form is
linguistically recognized.
>>> import re
>>> sentence = 'Jael rushed hurtling down the stairs'
>>> tokens = sentence.split()
>>> pattern = '(s|ing|ed)$'
>>> stems = [re.sub(pattern, '', token) for token in tokens]
>>> stems
['Jael', 'rush', 'hurtl', 'down', 'the', 'stair']



Stem

Linguistic Definition
The base of a given word form, to which inflectional information is added.

NLP Definition
The base to which a given type may be reduced (“stemming”) by stripping away (known)
inflectional (and sometimes derivational) information, whether or not the resulting form is
linguistically recognized.
>>> import re
>>> sentence = 'Jael rushed hurtling down the stairs'
>>> tokens = sentence.split()
>>> pattern = '(s|ing|ed)$'
>>> stems = [re.sub(pattern, '', token) for token in tokens]
>>> stems
['Jael', 'rush', 'hurtl', 'down', 'the', 'stair']



Lemma

Linguistic Definition
Dictionary headword

NLP Definition
Unique identifier to which inflected forms of the same word may be assigned



Lemma

Linguistic Definition
Dictionary headword

NLP Definition
Unique identifier to which inflected forms of the same word may be assigned



n-Gram

A sequence consisting of n words as they occur in a string of text.

Figure 2: Double quotes yield n-grams on most search engines

▶ we speak of bigrams and trigrams but commonly write 2-gram, 3-gram
▶ n-grams offer the benefit of dimension reduction but also improve lexical precision.



n-Gram

A sequence consisting of n words as they occur in a string of text.

Figure 2: Double quotes yield n-grams on most search engines

▶ we speak of bigrams and trigrams but commonly write 2-gram, 3-gram
▶ n-grams offer the benefit of dimension reduction but also improve lexical precision.



n-Gram

A sequence consisting of n words as they occur in a string of text.

Figure 2: Double quotes yield n-grams on most search engines

▶ we speak of bigrams and trigrams but commonly write 2-gram, 3-gram
▶ n-grams offer the benefit of dimension reduction but also improve lexical precision.



Pipeline

raw text

tokenized

normalized

lemmatized

POS-tagged

The processing sequence from input to the desired structured data.



Google Books Ngram Viewer



What Is Google Books?

▶ Began in 2002
▶ Went live in 2004
▶ Aims to digitize large numbers of books
▶ Upwards of 25 million books scanned before they went quiet about progress
▶ Met with a great deal of litigation (notably Author’s Guild and the American Association

of Publishers)
▶ The project has slowed down since c. 2012 (but Ngram data set updated in 2024)
▶ Official (but dated) history page reads “we’re not done—not until all of the books in the

world can be found by everyone, everywhere, at any time they need them.”

https://books.google.com/intl/en/googlebooks/about/history.html


What Is the Value of Equipping Google Books with an n-gram Reader?

▶ The largest searchable corpus of print works and ebooks in the history of the world
▶ Historical value: quantify the historical use of concepts
▶ Linguistic value: quantify the historical use of words, phrases, spellings

▶ Greatly facilitates OED attestation research!

▶ Methodology: sensible combination of word types and lemmatization



Demonstration

books.google.com/ngrams

https://books.google.com/ngrams


Algorithm

Any unigram is scored against the full corpus of unigrams for the chosen language corpus;

Any bigram is scored against the full corpus of bigrams for the chosen language corpus.

Thus a graph plotting a unigram and a bigram is not, strictly speaking, a comparison.



Usage (1/2)
▶ Enter comma-separated queries to see them plotted against each other
▶ A wildcard (*) returns the top ten matches e.g. the weather is *

▶ gram_INF returns inflected forms of a lexical form gram e.g. seek_INF returns sought, seek,
seeking, seeks

▶ gram_NOUN, gram_VERB, etc. tries to return only the matching part of speech
e.g. feast_VERB should not find a hit in the sequence “a feast”

▶ gram_* plots all parts of speech for that form against each other e.g. feast_* returns the
noun feast, the verb feast, the adjective feast, and some noise

▶ Parts of speech on their own return any match e.g. kiss _PRON_ mother should return
“kiss your mother,” “kiss my mother,” etc., but plotted as a single function;

▶ Parts of speech preceded by a wildcard are separated out into different matches e.g. kiss
*_PRON mother should return separate statistics on each of “kiss your mother,” “kiss my
mother,” etc.



Usage (2/2)

▶ Sentence boundaries: _START_ / _END_
▶ Dependency relations: weather=>fair,weather=>beautiful,weather=>nice
▶ Combined plots: +, e.g. (ale + lager + beer)

▶ Subtracted plots: -, e.g. (ale + lager + beer) - (sparkly + sparkly wine +
champagne)

▶ Divided plots: /, e.g. beer / wine

▶ Multiplied plots: *, e.g. fish,(wallaby * 1000)

▶ Plots from multiple corpora: :, e.g. wizard:eng,wizard:eng_fiction
▶ Syntactic “root”: _ROOT_, e.g. _ROOT_=>eat to return clauses with eat as the finite verb



Limitations

▶ Skewed corpus (synchronically)
▶ Scientific literature overrepresented (e.g. “Figure” vs “figure”)

▶ Difference in skew over time
▶ Early corpus skews towards religion, late corpus towards science

▶ Disregards print run/readership
▶ OCR errors

▶ f vs ſ

▶ Not representative or reliable prior to c. 1800



Bibliography

Bird, Steven, Ewan Klein, and Edward Loper. Natural Language Processing with Python.
Sebastopol, CA: O’Reilly, 2009. https://www.nltk.org/book/.

Younes, Nadja, and Ulf-Dietrich Reips. “Guideline for Improving the Reliability of Google
Ngram Studies: Evidence from Religious Terms.” PLoS ONE 14 (March 22, 2019).
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213554.

Zhang, Sarah. “The Pitfalls of Using Google Ngram to Study Language.” Wired, October 12,
2015.
https://www.wired.com/2015/10/pitfalls-of-studying-language-with-google-ngram/.

https://www.nltk.org/book/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213554
https://www.wired.com/2015/10/pitfalls-of-studying-language-with-google-ngram/

	Concepts
	Google Books Ngram Viewer

