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Concepts



String

A sequence of text as typically assigned to a (constant or) variable:

>>> phrase = 'the tortoise and the hare'
>>> print(phrase)
'the tortoise and the hare'

In Python, any string is also a list of characters:

>>> if 'i' in phrase:
>>> phrase.index('i')
9

Python counts indices (but not tallies) from 0:

>>> phrase[1]
'h'
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Language Arithmetic

>>> from collections import Counter
>>> phrase = 'the tortoise and the hare'
>>> Counter(phrase)
Counter({'t': 4, 'e': 4, ' ': 4, 'h': 3, 'o': 2, 'r': 2, 'a': 2, 'i': 1,
's': 1, 'n': 1, 'd': 1})



Scrabble Design Made Easy

(See frequency.py)

Pop quiz: why is <p> such a rare letter in Old English?
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What About Boggle?

(See oedistribution.py)



(Word) Token
When reading a text (corpus) sequentially, each instance of a word form you encounter is its
own token. We may write or employ functions to tokenize a text:

>>> phrase = 'the tortoise and the hare'
>>> tokens = phrase.split()
>>> tokens
['the', 'tortoise', 'and', 'the', 'hare']

>>> len(tokens)
5
>>> tokens.sort()
>>> tokens
['and', 'hare', 'the', 'the', 'tortoise']



(Word) Token
When reading a text (corpus) sequentially, each instance of a word form you encounter is its
own token. We may write or employ functions to tokenize a text:

>>> phrase = 'the tortoise and the hare'
>>> tokens = phrase.split()
>>> tokens
['the', 'tortoise', 'and', 'the', 'hare']

>>> len(tokens)
5
>>> tokens.sort()
>>> tokens
['and', 'hare', 'the', 'the', 'tortoise']



(Word) Token
When reading a text (corpus) sequentially, each instance of a word form you encounter is its
own token. We may write or employ functions to tokenize a text:

>>> phrase = 'the tortoise and the hare'
>>> tokens = phrase.split()
>>> tokens
['the', 'tortoise', 'and', 'the', 'hare']

>>> len(tokens)
5
>>> tokens.sort()
>>> tokens
['and', 'hare', 'the', 'the', 'tortoise']



Bag of Words

A model storing information on each word type (i.e. form) and its frequency in a text (corpus),
but discarding syntax and word order.

>>> Counter(tokens)
Counter({'the': 2, 'tortoise': 1, 'and': 1, 'hare': 1})



Term; or (Word) Type

Distinct orthographical form (i.e. spelling) in the corpus.

>>> tokens = ['the', 'tortoise', 'and', 'the', 'hare']
>>> terms = list(dict.fromkeys(tokens))
>>> len(terms)
4
>>> terms
['the', 'tortoise', 'and', 'hare']



Zipf ’s Law
A word token’s frequency in a natural corpus f(r) is
inversely proportional to its rank (r) in the word
frequency table.

𝑓(𝑟) ∝ 1
(𝑟 + 𝛽)𝛼

where 𝛼 ≈ 1 and 𝛽 ≈ 2.7

Figure 1: Frequency/rank log plot for the
first 10 mln words in 30 Wikipedias
(CC-BY-SA Sergio Jimenez)

https://en.wikipedia.org/wiki/File:Zipf_30wiki_en_labels.png
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Zipf ’s Law in Natural Languages

Brown Corpus tallies (from Lane, Natural Language Processing in Action, p. 87):
1. the: 69971
2. of: 36412
3. and: 28853
4. to: 26158
5. a: 23195
6. in: 21337
7. that: 10594
8. is: 10109
9. was: 9815
10. he: 9548

(etc.)



What’s the Use of Zipf ’s Law in Natural Languages?

▶ Topic modelling: we know what a document is about not by finding the most frequent
words, but by finding the words that transgress Zipf ’s Law the most (TF-IDF).

▶ This is how search engines work!



Stem

Linguistic Definition
The base of a given word form, to which inflectional information is added.

NLP Definition
The base to which a given type may be reduced (“stemming”) by stripping away (known)
inflectional (and sometimes derivational) information, whether or not the resulting form is
linguistically recognized.
>>> import re
>>> sentence = 'Jael rushed hurtling down the stairs'
>>> tokens = sentence.split()
>>> pattern = '(s|ing|ed)$'
>>> stems = [re.sub(pattern, '', token) for token in tokens]
>>> stems
['Jael', 'rush', 'hurtl', 'down', 'the', 'stair']
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Lemma

Linguistic Definition
Dictionary headword

NLP Definition
Unique identifier to which inflected forms of the same word may be assigned
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n-Gram

A sequence consisting of n words as they occur in a string of text.

Figure 2: Double quotes yield n-grams on most search engines

▶ we speak of bigrams and trigrams but commonly write 2-gram, 3-gram
▶ n-grams offer the benefit of dimension reduction but also improve lexical precision.
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Pipeline

raw text

tokenized

normalized

lemmatized

POS-tagged

The processing sequence from input to the desired structured data.



Google Books Ngram Viewer



What Is Google Books?

▶ Began in 2002
▶ Went live in 2004
▶ Aims to digitize large numbers of books
▶ Upwards of 25 million books scanned before they went quiet about progress
▶ Met with a great deal of litigation (notably Author’s Guild and the American Association

of Publishers)
▶ The project has slowed down since c. 2012 (but Ngram data set updated in 2024)
▶ Official (but dated) history page reads “we’re not done—not until all of the books in the

world can be found by everyone, everywhere, at any time they need them.”

https://books.google.com/intl/en/googlebooks/about/history.html


What Is the Value of Equipping Google Books with an n-gram Reader?

▶ The largest searchable corpus of print works and ebooks in the history of the world
▶ Historical value: quantify the historical use of concepts
▶ Linguistic value: quantify the historical use of words, phrases, spellings

▶ Greatly facilitates OED attestation research!

▶ Methodology: sensible combination of word types and lemmatization



Demonstration

books.google.com/ngrams

https://books.google.com/ngrams


Algorithm

Any unigram is scored against the full corpus of unigrams for the chosen language corpus;

Any bigram is scored against the full corpus of bigrams for the chosen language corpus.

Thus a graph plotting a unigram and a bigram is not, strictly speaking, a comparison.



Usage (1/2)
▶ Enter comma-separated queries to see them plotted against each other
▶ A wildcard (*) returns the top ten matches e.g. the weather is *

▶ gram_INF returns inflected forms of a lexical form gram e.g. seek_INF returns sought, seek,
seeking, seeks

▶ gram_NOUN, gram_VERB, etc. tries to return only the matching part of speech
e.g. feast_VERB should not find a hit in the sequence “a feast”

▶ gram_* plots all parts of speech for that form against each other e.g. feast_* returns the
noun feast, the verb feast, the adjective feast, and some noise

▶ Parts of speech on their own return any match e.g. kiss _PRON_ mother should return
“kiss your mother,” “kiss my mother,” etc., but plotted as a single function;

▶ Parts of speech preceded by a wildcard are separated out into different matches e.g. kiss
*_PRON mother should return separate statistics on each of “kiss your mother,” “kiss my
mother,” etc.



Usage (2/2)

▶ Sentence boundaries: _START_ / _END_
▶ Dependency relations: weather=>fair,weather=>beautiful,weather=>nice
▶ Combined plots: +, e.g. (ale + lager + beer)

▶ Subtracted plots: -, e.g. (ale + lager + beer) - (sparkly + sparkly wine +
champagne)

▶ Divided plots: /, e.g. beer / wine

▶ Multiplied plots: *, e.g. fish,(wallaby * 1000)

▶ Plots from multiple corpora: :, e.g. wizard:eng,wizard:eng_fiction
▶ Syntactic “root”: _ROOT_, e.g. _ROOT_=>eat to return clauses with eat as the finite verb



Limitations

▶ Skewed corpus (synchronically)
▶ Scientific literature overrepresented (e.g. “Figure” vs “figure”)

▶ Difference in skew over time
▶ Early corpus skews towards religion, late corpus towards science

▶ Disregards print run/readership
▶ OCR errors

▶ f vs ſ

▶ Not representative or reliable prior to c. 1800
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