Introduction to English Linguistics

13: Natural Language Processing

P. S. Langeslag

GEORG-AUGUST-UNIVERSITAT
GOTTINGEN &ssusn coumorn

Concepts

String

A sequence of text as typically assigned to a (constant or) variable:

>>> phrase = 'the tortoise and the hare'
>>> print(phrase)
'the tortoise and the hare'

String

A sequence of text as typically assigned to a (constant or) variable:

>>> phrase = 'the tortoise and the hare'
>>> print(phrase)
'the tortoise and the hare'

In Python, any string is also a list of characters:

>>> if 'i' in phrase:
>>> phrase.index('i")
9

String

A sequence of text as typically assigned to a (constant or) variable:

>>> phrase = 'the tortoise and the hare'
>>> print(phrase)
'the tortoise and the hare'

In Python, any string is also a list of characters:

>>> if 'i' in phrase:
>>> phrase.index('i")
9

Python counts indices (but not tallies) from @:

>>> phrase[1]
Ihl

Language Arithmetic

>>> from collections import Counter

>>> phrase = 'the tortoise and the hare'
>>> Counter(phrase)
Counter({'t': 4, 'e': 4, " '+ 4, 'h': 3, '0o': 2, 'r': 2, 'a':

s'+'1, 'n': 1, 'd': 1})

Scrabble Design Made Easy

(See frequency.py)

Scrabble Design Made Easy

(See frequency.py)

Pop quiz: why is <p> such a rare letter in Old English?

What About Boggle?

(See oedistribution.py)

(Word) Token

When reading a text (corpus) sequentially, each instance of a word form you encounter is its
own token. We may write or employ functions to tokenize a text:

>>> phrase = 'the tortoise and the hare'
>>> tokens = phrase.split()
>>> tokens

['the', 'tortoise', 'and', 'the', 'hare']

(Word) Token

When reading a text (corpus) sequentially, each instance of a word form you encounter is its
own token. We may write or employ functions to tokenize a text:

>>> phrase = 'the tortoise and the hare'
>>> tokens = phrase.split()

>>> tokens

['the', 'tortoise', 'and', 'the', 'hare']

>>> len(tokens)

5

>>> tokens.sort()

>>> tokens

['and', 'hare', 'the', 'the', 'tortoise']

(Word) Token

When reading a text (corpus) sequentially, each instance of a word form you encounter is its
own token. We may write or employ functions to tokenize a text:

>>> phrase = 'the tortoise and the hare'
>>> tokens = phrase.split()

>>> tokens

['the', 'tortoise', 'and', 'the', 'hare']

>>> len(tokens)

5

>>> tokens.sort()

>>> tokens

['and', 'hare', 'the', 'the', 'tortoise']

! !

Bag of Words

A model storing information on each word type (i.e. form) and its frequency in a text (corpus),
but discarding syntax and word order.
>>> Counter(tokens)

Counter({'the': 2, 'tortoise': 1, 'and': 1, 'hare': 1})

Term; or (Word) Type

Distinct orthographical form (i.e. spelling) in the corpus.

>>> tokens = ['the', 'tortoise', 'and', 'the', 'hare'l]
>>> terms = list(dict.fromkeys(tokens))

>>> len(terms)

4

>>> terms

['the', 'tortoise', 'and', 'hare']

Zipt’s Law

A word token’s frequency in a natural corpus f{7) is
inversely proportional to its rank () in the word
frequency table.

https://en.wikipedia.org/wiki/File:Zipf_30wiki_en_labels.png

Zipt’s Law

A word token’s frequency in a natural corpus f{7) is
inversely proportional to its rank () in the word
frequency table.

f(r) o

(r+p8)*
where o ~ 1 and 8 ~ 2.7

Zipf's law

log(frecuency)

0 2 4 6 8 10 12 14
log(rank)

Figure 1: Frequency/rank log plot for the
first 10 mln words in 30 Wikipedias
(CC-BY-SA Sergio Jimenez)

https://en.wikipedia.org/wiki/File:Zipf_30wiki_en_labels.png

Zipt’s Law in Natural Languages

Brown Corpus tallies (from Lane, Natural Language Processing in Action, p. 87):

. the: 69971
. of: 36412

. and: 2883
to: 26158
a: 23195
in: 21337
that: 10594
is: 10109

O PN A B Do

was: 981§
he: 9548

S

(etc.)

What's the Use of Zipf’s Law in Natural Languages?

P Topic modelling: we know what a document is about not by finding the most frequent
words, but by finding the words that transgress Zipf’s Law the most (TF-IDF).
P This is how search engines work!

Stem

Linguistic Definition

The base of a given word form, to which inflectional information is added.

Stem

Linguistic Definition

The base of a given word form, to which inflectional information is added.

NLP Definition

The base to which a given type may be reduced (“stemming”) by stripping away (known)

inflectional (and sometimes derivational) information, whether or not the resulting form is
linguistically recognized.

>>> import re

>>> sentence = 'Jael rushed hurtling down the stairs'

>>> tokens = sentence.split()

>>> pattern = '(s|ing|ed)$’

>>> stems = [re.sub(pattern, '', token) for token in tokens]
>>> stems

['Jael', 'rush', 'hurtl', 'down', 'the',6 'stair']

Lemma

Linguistic Definition

Dictionary headword

Lemma

Linguistic Definition
Dictionary headword

NLP Definition

Unique identifier to which inflected forms of the same word may be assigned

n-Gram

A sequence consisting of n words as they occur in a string of text.

n-Gram

A sequence consisting of n words as they occur in a string of text.

"vegan mango curry']

vegan mango curry sauce
vegan mango curry recipe

vegan mango curry tofu

Figure 2: Double quotes yield #n-grams on most search engines

n-Gram

A sequence consisting of n words as they occur in a string of text.

"vegan mango curry'] X

vegan mango curry sauce
vegan mango curry recipe

vegan mango curry tofu

Figure 2: Double quotes yield #n-grams on most search engines

P we speak of bigrams and trigrams but commonly write 2-gram, 3-gram
P n-grams offer the benefit of dimension reduction but also improve lexical precision.

Pipeline

raw text

tokenized

The processing sequence from input to the desired structured data.

normalized

lemmatized

POS-tagged

Google Books Ngram Viewer

What Is Google Books?

P Began in 2002

P Went live in 2004

P Aims to digitize large numbers of books

P Upwards of 25 million books scanned before they went quiet about progress

P Met with a great deal of litigation (notably Author’s Guild and the American Association
of Publishers)

P The project has slowed down since c. 2012 (but Ngram data set updated in 2024)

P Official (but dated) history page reads “we’re not done—not until all of the books in the
world can be found by everyone, everywhere, at any time they need them.”

https://books.google.com/intl/en/googlebooks/about/history.html

What Is the Value of Equipping Google Books with an n-gram Reader?

P The largest searchable corpus of print works and ebooks in the history of the world
P Historical value: quantify the historical use of concepts

P Linguistic value: quantify the historical use of words, phrases, spellings

P Greatly facilitates OED attestation research!

P Methodology: sensible combination of word types and lemmatization

Demonstration

books.google.com/ngrams

https://books.google.com/ngrams

Algorithm

Any unigram is scored against the full corpus of unigrams for the chosen language corpus;
Any bigram is scored against the full corpus of bigrams for the chosen language corpus.

Thus a graph plotting a unigram and a bigram is not, strictly speaking, a comparison.

Usage (1/2)
P Enter comma-separated queries to see them plotted against each other
P A wildcard (*) returns the top ten matches e.g. the weather is *

P gram_INF returns inflected forms of a lexical form gram e.g. seek INF returns sought, seck,
seeking, seeks

P gram_NOUN, gram_VERB, etc. tries to return only the matching part of speech
e.g. feast_VERB should not find a hit in the sequence “a feast”

P gram * plots all parts of speech for that form against each other e.g. feast_* returns the
noun feast, the verb feast, the adjective feast, and some noise

P Parts of speech on their own return any match e.g. kiss _PRON_ mother should return
“kiss your mother,” “kiss my mother,” etc., but plotted as a single function;

P Parts of speech preceded by a wildcard are separated out into different matches e.g. kiss
*_PRON mother should return separate statistics on each of “kiss your mother,” “kiss my
mother,” etc.

Usage (2/2)

vvyvyy

vvyvyy

Sentence boundaries: START / END_
Dependency relations: weather=>fair,weather=>beautiful,weather=>nice
Combined plots: +, e.g. (ale + lager + beer)

Subtracted plots: -, e.g. (ale + lager + beer) - (sparkly + sparkly wine +
champagne)

Divided plots: /, e.g. beer / wine
Multiplied plots: *, e.g. fish, (wallaby * 1000)
Plots from multiple corpora: :, e.g. wizard:eng,wizard:eng_fiction

Syntactic “root” _ROOT_, e.g. ROOT_=>eat to return clauses with eaz as the finite verb

Limitations

P Skewed corpus (synchronically)

P Scientific literature overrepresented (e.g. “Figure” vs “figure”)
P Difference in skew over time

P Early corpus skews towards religion, late corpus towards science
P Disregards print run/readership

» OCR errors
» fvsfl

P Not representative or reliable prior to c. 1800

Bibliography

Bird, Steven, Ewan Klein, and Edward Loper. Natural Language Processing with Python.
Sebastopol, CA: O’Reilly, 2009. https://www.nltk.org/book/.

Younes, Nadja, and Ulf-Dietrich Reips. “Guideline for Improving the Reliability of Google
Ngram Studies: Evidence from Religious Terms” PLoS ONE 14 (March 22, 2019).
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.o213554.

Zhang, Sarah. “The Pitfalls of Using Google Ngram to Study Language.” Wired, October 12,
2015.
https://www.wired.com/2015/10/pitfalls-of-studying-language-with-google-ngram/.

https://www.nltk.org/book/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213554
https://www.wired.com/2015/10/pitfalls-of-studying-language-with-google-ngram/

	Concepts
	Google Books Ngram Viewer

