
Lemmatization

P. S. Langeslag

Why Lemmatize?

▶ Linguistics: index word forms and frequency
▶ Corpus searchability
▶ NLP: dimension reduction

Principles

▶ Lemmatization is classification.
▶ Classification is traditionally a supervised learning task.
▶ Supervised learning requires a high proportion of training data to labels.
▶ Lemmatization is a label-heavy task.
▶ Therefore, many “naive” lemmatizers bypass learning altogether.

Naive Lemmatization

▶ Consult a list of form–label correspondences
▶ If a form matches multiple headwords, select the most frequent
▶ Do not consider token context

CLTK’s Naive Old English Lemmatizer: Default Pipeline Output

>>> from nltk.corpus import PlaintextCorpusReader
>>> from cltk import NLP
>>> pipeline = NLP(language='ang', suppress_banner=True)
>>> echoe = PlaintextCorpusReader('echoe', '.*txt')
>>> vercelli9 = echoe.raw('394.11.txt')
>>> processed = pipeline.analyze(text=vercelli9)
>>> processed.tokens[:12]
['men', 'ða', 'leofestan', 'we', 'geleornodon', 'on', 'godcundum', 'gewritum',
'þæt', 'æghwylces', 'monnes', 'sawul']
>>> processed.lemmata[:12]
['mann', 'þa', 'leofestan', 'we', 'geleornodon', 'on', 'godcundum', 'gewrit',
'þæt', 'æghwylces', 'monnes', 'sawul']

CLTK’s Naive Old English Lemmatizer: best_guess=False

[('Hit', ['hit']), ('sæigð', []), ('on', ['on', 'an']), ('halgen', ['halig']),
('bocan', []), ('þæt', ['þæt', 'se']), ('æfter', ['æfter']), ('gearan', []),
('ymbryne', []), ('swa', ['swa']), ('gewurðen', []), ('scule', []), ('þæt',
['þæt', 'se']), ('eall', ['eall', 'eal']), ('middeneard', []), ('mid', ['mid']),
('hæðenra', ['hæðen']), ('þeode', ['þeod']), ('geðrynge', []), ('by', []),
('and', ['and']), ('mid', ['mid']), ('heordan', []), ('hæftnysse', []), ('swa',
['swa']), ('swyðe', ['swiðe', 'swyðe']), ('gedrecced', []), ('and', ['and']),
('gedrefod', []), ('wurðeð', []), ('þæt', ['þæt', 'se']), ('hine', ['he']),
('uneaðe', []), ('ænig', ['ænig']), ('riht', ['riht']), ('gelefed', []), ('mann',
['mann']), ('mid', ['mid']), ('þan', ['se']), ('heofonlicen', []), ('kinges', []),
('tacne', []), ('gebletsigen', []), ('mote', ['motan']), ('oððe', ['oððe']),
('gesenigen', []), ('durre', ['durran']), ('Þas', ['þes']),
('geswæncennysse', []), ('we', ['we']), ('mægen', ['magan']), . . .

CLTK’s Naive Old English Lemmatizer: return_frequencies=True

[[('to', -2.7736708137329047)], [('folc', -6.049241982277651)],
[('leof', -7.281385663570283)], [('mann', -6.829400539827225)],
[('habban', -6.742389162837596)], [('æfre', -6.924710719631551)], [],
[('geleafa', -8.534148632065651)], [('an', -5.02260319323463),
('on', -2.210686128731377)], [('an', -5.02260319323463)],
[('god', -5.116421948452285)], [('and', -2.8869365088978443)],
[('understandan', -9.227295812625597)], [('geornlice', -9.227295812625597)],
[('hu', -5.3771482109155375)], [('micel', -5.56373416649595)],
[('þearf', -7.030071235289377), ('þurfan', 0)], [('wesan', -7.435536343397541),
('seon', -7.435536343397541), ('is', -4.0343389617353855), ('ƿesan', 0)],
[('cristen', 0)], [('mann', -6.829400539827225)], [('þæt', -2.365584472144866),
('se', -2.9011463394704973)], [('hi', -3.120272924883342),
('heo', -4.271468755024335)], [('hi', -3.120272924883342),
('hira', -6.336924054729431)], [], [], . . .

CLTK’s Naive Lemmatizer: Workings I
def lemmatize_token(

self, token: str, best_guess: bool = True, return_frequencies: bool = False
) -> Union[str, list[Union[str, tuple[str, float]]]]:

lemmas = self.inverted_index.get(token.lower(), None)
if not lemmas:

mod_token = self._apply_regex(token.lower())
lemmas = self.inverted_index.get(mod_token, None)

if best_guess:
if not lemmas:

lemma = token
elif len(lemmas) > 1:

counts = [self.unigram_counts.get(word, 0) for word in lemmas]
lemma = lemmas[argmax(counts)]

CLTK’s Naive Lemmatizer: Workings II

else:
lemma = lemmas[0]

if return_frequencies:
lemma = (lemma, self._relative_frequency(lemma))

else:
lemma = [] if not lemmas else lemmas
if return_frequencies:

lemma = [(word, self._relative_frequency(word)) for word in lemma]

return lemma

CLTK’s Naive Lemmatizer: Workings III

def _relative_frequency(self, word: str) -> float:
"""Computes the log relative frequency for a word form"""

count = self.unigram_counts.get(word, 0)
return math.log(count / len(self.unigram_counts)) if count > 0 else 0

Why Prior Lemmatization Data Are More Valuable than Lemma Frequency

DOE A–H attested spelling results for “is”
1. hē, hēo, hit (ca. 200,000 occ.)
2. bēon (ca. 100,000 occ.)

DOE A–H attested spelling results for “on”
1. and, ond (ca. 172,000 occ.)
2. ān (ca. 9000 occ.)
3. hēr-on (16 occ.)

DOE lemmatization results for “on”
1. on (85,009 assg.)
2. onǣlan (69 assg.)
3. ān (7 assg.)
4. headword #1013 (2 assg.)
5. onþēon (1 assg.)
6. onsēon (1 assg.)
7. onþwægennes (1 assg.)
8. unnan (1 assg.)
9. headword #21161 (1 assg.)
10. onþryccan (1 assg.)
11. on~eardian (1 assg.)
12. onþracian (1 assg.)

Why Prior Lemmatization Data Are More Valuable than Lemma Frequency

DOE A–H attested spelling results for “is”
1. hē, hēo, hit (ca. 200,000 occ.)
2. bēon (ca. 100,000 occ.)

DOE A–H attested spelling results for “on”
1. and, ond (ca. 172,000 occ.)
2. ān (ca. 9000 occ.)
3. hēr-on (16 occ.)

DOE lemmatization results for “on”
1. on (85,009 assg.)
2. onǣlan (69 assg.)
3. ān (7 assg.)
4. headword #1013 (2 assg.)
5. onþēon (1 assg.)
6. onsēon (1 assg.)
7. onþwægennes (1 assg.)
8. unnan (1 assg.)
9. headword #21161 (1 assg.)
10. onþryccan (1 assg.)
11. on~eardian (1 assg.)
12. onþracian (1 assg.)

Why Prior Lemmatization Data Are More Valuable than Lemma Frequency

DOE A–H attested spelling results for “is”
1. hē, hēo, hit (ca. 200,000 occ.)
2. bēon (ca. 100,000 occ.)

DOE A–H attested spelling results for “on”
1. and, ond (ca. 172,000 occ.)
2. ān (ca. 9000 occ.)
3. hēr-on (16 occ.)

DOE lemmatization results for “on”
1. on (85,009 assg.)
2. onǣlan (69 assg.)
3. ān (7 assg.)
4. headword #1013 (2 assg.)
5. onþēon (1 assg.)
6. onsēon (1 assg.)
7. onþwægennes (1 assg.)
8. unnan (1 assg.)
9. headword #21161 (1 assg.)
10. onþryccan (1 assg.)
11. on~eardian (1 assg.)
12. onþracian (1 assg.)

CLTK Shortcomings

1. Limited data (mostly “standard” spellings)

2. Confused data (multiple lemmas for the same word; ƿ and diacritics)

3. Most likely headword calculated by dividing the frequency of the headword form (a
questionable choice) by the size of the dictionary (not the sum of term occurrences)

Available Data Sets

Table 1: Potential data sources for the lemmatization of Old English

Source Tokens Terms Lemmas POS
DOE lemmatization (approx. M–S) 663,535 44,788 8476 no
ParCorOE 22,608 3114 yes
DOE att. sp. (A–H / A–Le) n/a 87,875 15,533 yes
CLTK 10,171 6500 no
YCOE 1,639,127 n/a yes
Bosworth–Toller
Tichý PhD data set based B–T
DOE provisional headword list
Wiktionary

The Value of High-Resolution Data
DOE Attested Spelling Data: behygdiglīce (adv.), “carefully, attentively”
be-hygdiglīce, be-hygdlīce
9 occ. (in multiple MSS, mainly in Bede)

behygdiglice behydelice
bihygdiglice bighyldiglice
bighygdiglice behigdilice
bihygdelice bihigdelice
bighygdelice bighigdelice
behydiglice behidiglice
bihydiglice bighidiglice
bighydiglice bighidilice
behydilice behygdlice
bihydilice bihygdlice
bighydilice

Proportion of Unambiguous Forms

Metric DOE Att. Sp. A–H DOEC Lemmatization M–S
Internally unambiguous terms 94% 96%
Internally unambiguous tokens 45%

Homographs: god

ECHOE corpus count
▶ 2691 occurrences of godes

▶ 1816 occurrences of god

▶ 1611 occurrences of gode

▶ 242 occurrences of godum

▶ 95 occurrences of goda

i.e. 6455 standard ambiguous forms

→ without disambiguation,
c. 710 assignments would
have to be hand-corrected (but all
would have to be proofread)

god

gōd noun:
good

(DOEC: 4%)

gōd adj.: good
(DOEC: 7%)

god noun: god
(DOEC: 89%)

Homographs: þā

ECHOE corpus count
▶ 14,132 occurrences

þā/ðā

conjunction:
when

(ParCorOE: 20%)

adverb: then
(ParCorOE: 61%)

pronoun
(ParCorOE: 18%)

asf: her

np: they

ap: them

Word Sense Disambiguation

Table 3: Token context window

-2 -1 TARGET +1 +2
criste gelyfde þa cwæð he

Table 4: POS context window

-2 -1 TARGET +1 +2
PROPN VERB þa VERB PRON

Word Sense Disambiguation

Table 3: Token context window

-2 -1 TARGET +1 +2
criste gelyfde þa cwæð he

Table 4: POS context window

-2 -1 TARGET +1 +2
PROPN VERB þa VERB PRON

Naive Part-of-Speech Assignment

Use counts from
▶ YCOE
▶ ParCorOE

Learning Features

features = {}
features['form'] = 'þa'
features['context1'] = 'criste'
features['context2'] = 'gelyfde'
features['context3'] = 'cwæð'
features['context4'] = 'he'

Multinomial Naive Bayes Classification

Prediction involves multiplying the label’s prior with the likelihood of each feature occuring if
that label is correct (the posterior). (This describes the nominator of the full theorem.)

e.g. the prior of “þa” being þā (adverb) is 0.6; the likelihood that þā (adverb) is followed by a
verb is (say) 0.3; so the likelihood of both being true is 0.18. Since the likelihood of þā
(conjunction) or any of the pronoun forms being followed by a verb is smaller, those combined
likelihoods are more drastically decreased.

Multinomial Naive Bayes is for discrete features; Gaussian Naive Bayes is for continuous data,
i.e. real numbers.

Bayes’s Theorem in Full

𝑃(𝐻|𝐸) = 𝑃(𝐻)𝑃(𝐸|𝐻)
𝑃(𝐻)𝑃(𝐸|𝐻)+𝑃(¬𝐻)𝑃(𝐸|¬𝐻)

so given that 𝑃(𝑎𝑑𝑣) = 0.6 and 𝑃(𝑣𝑒𝑟𝑏𝑓𝑜𝑙𝑙𝑜𝑤𝑠|𝑎𝑑𝑣) = 0.3,
and let’s say 𝑃(𝑣𝑒𝑟𝑏𝑓𝑜𝑙𝑙𝑜𝑤𝑠|¬𝑎𝑑𝑣) = 0.8:

𝑃(𝑎𝑑𝑣|𝑣𝑒𝑟𝑏𝑓𝑜𝑙𝑙𝑜𝑤𝑠) = 0.6·0.3
0.6·0.3+0.4·0.8 = 0.36

What’s naive about Bayes’s theorem is that we’re treating each piece of evidence as independent
of the others; in fact, if the word that follows is a verb, that of course has consequences for the
likelihood of the next word over to be some other part of speech as well.

(See 3Blue1Brown.)

https://www.youtube.com/watch?v=HZGCoVF3YvM

Bayes’s Theorem in Full

𝑃(𝐻|𝐸) = 𝑃(𝐻)𝑃(𝐸|𝐻)
𝑃(𝐻)𝑃(𝐸|𝐻)+𝑃(¬𝐻)𝑃(𝐸|¬𝐻)

so given that 𝑃(𝑎𝑑𝑣) = 0.6 and 𝑃(𝑣𝑒𝑟𝑏𝑓𝑜𝑙𝑙𝑜𝑤𝑠|𝑎𝑑𝑣) = 0.3,
and let’s say 𝑃(𝑣𝑒𝑟𝑏𝑓𝑜𝑙𝑙𝑜𝑤𝑠|¬𝑎𝑑𝑣) = 0.8:

𝑃(𝑎𝑑𝑣|𝑣𝑒𝑟𝑏𝑓𝑜𝑙𝑙𝑜𝑤𝑠) = 0.6·0.3
0.6·0.3+0.4·0.8 = 0.36

What’s naive about Bayes’s theorem is that we’re treating each piece of evidence as independent
of the others; in fact, if the word that follows is a verb, that of course has consequences for the
likelihood of the next word over to be some other part of speech as well.

(See 3Blue1Brown.)

https://www.youtube.com/watch?v=HZGCoVF3YvM

Word Sense Disambiguation Demo

See in repo: disambiguation/.

Bibliography I
Johnson, Kyle P., Patrick J. Burns, John Stewart, Todd Cook, Clément Besnier, and William J.

B. Mattingly. “The Classical Language Toolkit: An NLP Framework for Pre-Modern
Languages.” In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing:
System Demonstrations, 20–29. Association for Computational Linguistics, 2021.
https://doi.org/10.18653/v1/2021.acl-demo.3.

Sanderson, Grant. “3Blue1Brown,” n.d. https://www.youtube.com/c/3blue1brown.

https://doi.org/10.18653/v1/2021.acl-demo.3
https://www.youtube.com/c/3blue1brown

