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Overview
Course Description
Natural language processing (NLP) is the interpretation and generation of human language by computational means. For
most living languages, this includes spoken and written modes of communication, and large languages such as English and
Mandarin have been so thoroughlymodelled that we need only plug into a Google API to gain access to predictive text input,
speech-to-text and text-to-speech engines, grammar checks, and translation. By contrast, our access to premodern languages
is primarily text-based, and what modest annotation tools have been created for them have overwhelmingly favoured such
larger languages as Latin. What few off-the-shelf libraries are available for the analysis of Old English, then, are limited and
in dire need of improvement. The computational handling of these corpora accordingly takes us back to the basics, manip-
ulating strings of text, but it also raises the question whether machine learning can be of help with so modest a corpus.

In this course, you will learn to deploy such Python libraries as NLTK and CLTK as well as the Python Standard Library
and regular expressions to organize Modern English, but above all Old English text and generate statistics on the basis of
plaintext corpora. You will try your hand at stemming, quantitative analysis, and word embedding, while picking up key
principles from the realms of linear algebra and machine learning along the way so you may develop an understanding of
what separates the abilities of humans and machines to process language, and how to go about training a machine to help
out with your research or other text-based projects.

The course assumes no prior knowledge of Python, algebra, ormachine learning, and students inmodules outside the English
Department in particular are not expected to have a prior knowledge of Old English.

Assessment
Students of B.EP.11b, M.EP.02b, and M.EP.05d will write a term paper (due 26 August; see module description for length
requirement) either on the topic of NLP itself or relying on its methods for the study of a premodern corpus. Students of
M.EP.02b also write the lecture exam; the other graduate modules do not have an exam.

Students registered for modules outside the English Department are, in most cases, expected simply to keep up with the
homework and will not be separately assessed by way of an exam or term paper; but please check your module description
and/or ask the instructor of the accompanying seminar for details.

Diversity
This course is run with the understanding that students bring a variety of backgrounds into the classroom in such domains
as socioeconomics, appearance, culture, religion, ability, gender, age, home/family situation, and sexual identity. With dif-
ferent backgrounds come different needs and sensitivities. If you feel your needs or those of a fellow student require special
attention or are being compromised, please feel free to make this known to me by whatever channel seems most appropri-
ate. (For more serious concerns, the Faculty and the University each have their own points of contact as well.) I will treat all
requests seriously and with confidentiality, and will seek to make accommodations within my abilities and reason. At the
same time, you too owe it to your fellow students to treat them with respect regardless of their background and identity. Do
not stand in the way of anyone’s well-being.
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Tutorials
If you wish to learn, or improve your reading knowledge of, Old English, look for tutorials and reading groups on Stud.IP.
If capacity allows, the tutorials for the Introduction to Medieval English Literature and Culture are open to you, as is the
student-run Old English Reading Group.

Schedule
Please prepare the following readings and do the following work ahead of the corresponding class, and take notes for in-class
discussion.

Your answers to study questions are not to be submitted in writing; instead, these questions help you prepare for in-class
discussion, while also guiding your exampreparation if applicable. Youwon’t be able to answer every last question, and some
have no “correct” answers.

Week 1 (8 April): Concepts

Read:

• Eistenstein ch. 1: “Introduction” (10 pp.; Stud.IP)
Takeaway: A concise introduction to the themes and challenges of NLP, with some reference to foundational publications.
Study questions:

1. “Much of today’s natural language processing research can be thought of as applied machine learning” (2). Can
you formulate when it makes sense to involve machine learning in NLP, and when it doesn’t?

2. “Natural language processing raises some particularly salient issues around ethics, fairness, and accountability”
(4). Can you think of any such issues we might encounter in the analysis of medieval corpora?

3. “From a practical standpoint, linguistic structure seems to be particularly important in scenarios where training
data is limited” (6). What implications does this understanding have for the tackling of medieval corpora?

Further reading (optional):

• Eistenstein: “Preface” (3 pp.; Stud.IP)
Takeaway: Identifies disciplines of relevance to NLP, and signposts the book’s structure.
Reading notes:

1. This preface cites a good number of introductory texts on relevant adjacent disciplines. A notable title among
the cited works isMathematics for Machine Learning, which is available open access.

2. Errata: the second instance of “phenomena” on p. x should be singular “phenomenon”; “multi sentence” on the
same page should read “multi-sentence.”

Week 2 (15 April): NLTK

Read:

• Langeslag, “JupyterLab” (4 pp.)
Takeaway: Basic instructions on how to navigate the environment you’ll rely on for your homework.

• Bird et al. ch. 1: “Language Processing and Python” (33 pp.)
Takeaway: Walks you through querying the textbook’s “Examples” corpus using the Python interpreter, and teaches the
basics of Python and some widespread domains of NLP along the way.
Reading notes:

1. Some chapters (but not all) in the online edition of this textbook omit the chapter reference in headings; thus
“§1.1.3” in these notes appears as section “1.3 Searching Text” in the HTML.

2. The exercises at the end of each chapter are optional; we won’t discuss them in class. I do, however, urge you to
try out all the book’s code examples (“listings”) given over the course of each chapter’s main content as you do
your weekly readings.
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3. In your interpreter, NLTK’s downloadermay not default to the graphical interface printed in the textbook. Either
way, the easiest way to download the textbook materials is simply to enter nltk.download('book') instead
of nltk.download(), then skip to importing.

4. Please note that nltk.FreqDist really just reproduces collections.Counter, so the two may be used in-
terchangeably. Just make sure to call it under the name by which you’ve imported it.

Study questions:
1. §1.1.4: Keeping inmind that corporamay be in anymodern or premodern language, what language features does

the lexical_diversity() function fail to account for?
2. §1.5.1: For eachof the examples ofworddisambiguationhere given, canyou formulateif ... then-disambiguation

rules? Use shorthand prose or pseudo-code, not actual Python at this stage.

Week 3 (22 April): Handling Plaintext Corpora

Read:

• Bird et al. ch. 2: “Accessing Text Corpora and Lexical Resources” (33 pp.)
Takeaway: Introduces a range of English-language corpora and demonstrates a fewmore analytical queries.

Do:

1. Your local copy of the git repository includes a corpus of Old English preaching texts called ECHOE in the folder
echoe/. Return to Bird et al. §2.1.9 (“Loading Your Own Corpus”), define corpus_root as 'echoe', load .* into
PlaintextCorpusReader as described in the instructions there, and inspect the fileids() so you know what
documents are available to call.

2. Now return to Bird et al. §1.1.4 (“Counting Vocabulary”) and determine for a selection of ECHOE documents how their
lexical diversity compares to someof thedocuments includedwithnltk.book (text1,text2, etc.), running thenec-
essary operations on the words property of your object, e.g. len(wordlists.words('394.11.txt')); or, bet-
ter, define variables like document = wordlists.words('394.11.txt') and run your lexical_diversity
function on them. (wordlists is an odd choice of variable name for what is really a text corpus; you may want to
choose somethingmore appropriate, such as echoe, instead.) What strikes you about the lexical diversity of these Old
English preaching texts compared to those shipped with the textbook? How do you explain your findings?

3. Now head to Bird et al. §1.3.1 (“Frequency Distributions”), add from nltk import FreqDist to your imports, and
plot a non-cumulative graph for the 50 most frequent word forms in three different texts. Save your notebook for in-
class discussion. What is the most frequent type? What could be done to clean up the results? Now compare your
graph with the cumulative plot from the textbook. Why do you suppose the textbook said to generate a cumulative
graph?
Tip: From this point on, we’ll work with ECHOE almost every week. If you want to try our methods on a different corpus,
nothing stops you from loading your own corpus into JupyterLab, or into a local installation of Python. Just make sure to
format and normalize your corpus thoroughly (cf. Lane et al. §2.2.5), which for ECHOE I have done ahead of time to make
your homework less cumbersome.

Week 4 (29 April): Raw Text Processing

Read:

• Bird et al. §§3.1–3.2, 3.4–3.5 (25 pp., from ch. 3: “Processing Raw Text”)
Takeaway: Explains how to import text data and use stock functions and regular expressions to manipulate strings.
Reading notes:

1. §3.1 “Electronic Books”: Though Project Gutenberg is thankfully accessible from Germany again, the files’ front
andbackmatter has changed somewhat since the current revision of the bookwasmade available. Thus to locate
the start of the backmatter you will want to run raw.rfind("*** END") rather than raw.rfind("End of
Project Gutenberg's Crime").
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2. Under §3.1 “Reading Local Files,” if you are following along with the examples, the easiest way to create a file in
JupyterLab is to select the Text File icon in the launcher category “Other.” You can use the “right-click” context
menu to rename untitled.txt into something more memorable after saving.

3. Also under §3.1 “Reading Local Files,” the U flag on Python’s stock function open(), for universal newline mode,
has been deprecated and superseded by an option newline=None, which is set by default, as is 'r'; so just
use f = open('document.txt'). Note that you do have to repeat the open() command after running the
.read()method, as the garbage collector closes it at this point! As you get more Python under your belt, you’ll
learn about ways of retaining information that won’t require you to reopen files.

4. §3.3 is a detailed treatment of text encoding solutions in Python. As long as we ensure we only work on UTF8
systems and with UTF8 files, we don’t need to worry about this, but do refer back to this section if you run into
issues with non-ASCII characters.

5. If you are running a local installation of Python, you may have to install bs4 and feedparser e.g. by running
pip install bs4 feedparser.

• “The Old English Scrabble Project” (3100 words)

Do:

1. As the author of the blog post referenced above admits, the corpus for their letter distribution is almost wholly poetic.
This shouldn’t matter, as the phonology of verse is no different than that of prose, but ECHOEwith its c. 540,000words
is nevertheless a farmore robust corpus than the 47,725-word corpus the author used. If you loadECHOE into a variable
echoe following the instructions for week 3, you can determine the absolute ranked frequency of all characters in the
corpus as follows:
from collections import Counter
Counter(echoe.raw())

2. Ignoring the space character and letters with diacritics, can you find a way to translate these figures into percentages?
3. What Scrabble letter point values would you assign on the basis of your analysis, and what formula have you used to

arrive at them? Which become the letters with the highest Scrabble point values, and do you know the historical-
linguistic background of why that is?

Further reading (optional):

• Lewis, “Rethinking the Value of Scrabble Tiles” (800 words)
Takeaway: Lewis’s CoffeeScript module offers an objective way of determining Scrabble letter values based on their fre-
quency and distribution in a user-supplied corpus.
Reading note:

1. Note that Lewis’s script doesn’t output a recommendation for how many tiles of each letter should be included.
Moreover, it doesn’t output a stable sum total of letter values (e.g. 74 for PDE, 108 for OEwith themaximumvalue
set to 10), so the recommended number of tiles for each letter can’t be a function of the letter value in absolute
numbers.

• Norvig, “English Letter Frequency Counts” (3650 words)
Takeaway: An accessible read on letter distribution in Present-Day English.

Week 5 (6May): Normalization, Tokenization, Stemming

Read:

• Bird et al. §§3.6–3.10 (15 pp., from ch. 3: “Processing Raw Text”)
Takeaway: Teaches the first stages in the tackling of any text corpus with the help of regular expressions.

Do:

1. Study an overview of Old English inflection alongside the rudimentary stemming syntax from the Concepts slides.
Now come up with a dozen or so of the most effective stemming rules for Old English, turn them into a Python script
along the lines demonstrated in the slides, and apply them to a few 20-token slices of ECHOE documents. Come to
class prepared to discuss your findings.
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Further reading (optional):

• Bird et al. ch. 4: “Writing Structured Programs” (44 pp.)
Takeaway: This chapter is not on NLP, but offers a more solid understanding of Python basics and is thus recommended
reading for anyone with no background in Python.

• Bird et al. ch. 5: “Categorizing and Tagging Words” (34 pp.)
Takeaway: Introduces part-of-speech tagging, a common NLP application we won’t be taking on in a major way this term.

Week 6 (13 May): Handling Tagged Corpora

Read:

• Langeslag, “NLTK’s YCOEModule” (5 pp.)
Takeaway: A demonstration of NLTK’s YCOECorpusReader module.

Do:

• Ælfric produced two “series” of Catholic Homilies: a volume of forty texts between c. 987 and early 991, and a second
such set between 991 and early 992. He then produced a volume of saints’ lives between c. 993 and c. 998. All three
collections are contained inYCOE. Scholars generally agree thatÆlfric tried out a newprose style, knownas rhythmical
prose, towards the end of the drafting stage for his second series of homilies, which had come into its own by the time
he began drafting his Lives of Saints. Is there some way you could quantify this development? And where do Ælfric’s
Supplementary Homilies stand on this spectrum? Tip: if you find YCOE’s index cumbersome, you can list just Ælfric’s
works using the following line: [(k,v) for k,v in documents.items() if 'Ælfric' in v] (you can copy
and paste Æ from the index.

• Usingwhat youhave learned so far, compare the lexical diversity of the book ofGenesis in theAuthorizedVersion (King
James Bible) shipped with nltk.book and the Old English translation contained in YCOE. This time, also compare
them for length and come up with a way of correcting for that difference. Come prepared to discuss your findings in
class.

• The Old English prose Genesis is believed to be the product of two translators. Ælfric claims to have produced a text
“up to Isaac,” suggesting that the rest is by someone else, though scholars have found traces of Ælfric’s style in isolated
sections of the later part as well. Can you think of a computational way to determine where Ælfric ended his main
stint?

Further reading (optional):

• Bird et al. ch. 8: “Analyzing Sentence Structure” (30 pp.)
Takeaway: Explains how NLPmay be used to parse English syntactic structures.

Week 7 (20May): NO CLASS (English Department reading week)

Week 8 (27 May): CLTK

Read:

• Kyle P. Johnson, “CLTK Demonstration” (1585 sloc)
Takeaway: A brief technical demonstration of how CLTKmay be used off the shelf.
Reading notes:

1. This introductionwaswritten as a Jupyter Notebook, so youmaywant to clone it directly into your course project
folder; or you can simply read along on GitHub, as the author has embedded his outputs in the file. If you do
wish to run the code yourself, you’ll have to uncomment the relevant lines in the first and third code fields before
running them.

2. You may skip the section on Greek; the Latin section suffices for demonstration purposes.
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• Langeslag, “CLTK” (5 pp., plus 3 pp. of appendices)
Takeaway: An attempt to make CLTK documentation both more accessible and more complete.

Do:
1. Now that you are in a position to lemmatize documents, investigate what happens to a document’s lexical diversity if

we run it through the lemmatizer first. Quantify the difference, then reflect on the implications of your findings. In
choosing your corpus, just remember that YCOE includes punctuation whereas ECHOE doesn’t, so a comparison between
the two would not be on equal terms unless you do a little more work to even them out.

Week 9 (3 June): TF-IDF

Read:
• Lane et al. ch. 3: “Math With Words (TF-IDF Vectors)” (27 pp.)
Takeaway: An introduction to the mathematical magic behind the computational analysis of relevance.
Reading notes:

1. Focus on understanding the concepts and how the code works; no need to reproduce the code if that only dis-
tracts from that focus. However, the authors have made all the code available in Jupyter Notebook format here;
or open a terminal window and run
git clone https://github.com/totalgood/nlpia.git in a terminal window from your home direc-
tory to download all the textbook’s examples along with the source code of the nlpia package. Make sure to
install the necessary packages (pip install nlpia scipy sklearn) before running the code examples.

2. Just tomake sure you get this right: Zipf ’s Law states that aword’s frequency approximates one over its frequency
rank ( 1

rank ), multiplied by the number of occurrences of the most frequent word. So given that the ranks first
and of second in a typical Modern English corpus, a document counting 100 instances of the former should have
about 100 · 1

2 = 50 of the latter.
3. Errata:

(a) On p. 74, the authors assert that “normalized term frequency. . . [is] the word count tempered by how long
the document is.” This is the accepted definition of normalized TF. By their own method, however, the TF
is in fact placed against the length of the list of types, not the list of tokens or document length! To see the
difference, compare the output of len(bag_of_words)with that of len(tokens). In their exercise on
p. 87 the authors correctly measure against the list of tokens. Then on p. 90 the mathematical expression
count(d) is imprecise, because you are not counting the document, but rather the number of tokens it
contains.

(b) On p. 77 for “This collections” read “This collection.”
(c) On p. 85, for “2” in “You’ll learn about part-of-speech tagging in chapter 2,” read “11.”
(d) Onp. 87, ignore the object namesintro_doc andhistory_doc given in the text body, as they don’t recur.
(e) On p. 90, to access log() you’ll have to import it from the math or numpy library.
(f) On p. 91 query_vec is defined twice where once would have sufficed.

Do:
1. Now that you have seen how to conduct TF-IDF analyses both from scratch (Lane et al. §§3.4.1–3.4.3) and through

prepared packages (§3.4.3), take on a set of three ECHOE documents of your choice (e.g. three versions of the Assump-
tion of Mary: 032.11, 048.54, and 382.13; or of Sermo Lupi: 068.04, 049B.40, and 331.27; or of Bethurum 17:
144.05, 331.26, and 331.30; or three randomly chosen documents. See instructions for week 3 on how to access
ECHOE; then to line up your texts, define a list as under Lane §3.2 but along the lines of
docs = [echoe.raw('032.11.txt'), echoe.raw('048.54.txt'), echoe.raw('382.13.txt')]. Then
create a vectormatrix following the instructions in Lane §3.4.3. Finally, determine which two of your three documents
are most alike as follows:
>>> from sklearn.metrics.pairwise import cosine_similarity
>>> cosine_similarity(model)
If your chosen documents are versions of the same text, inspect their respective length and determine whether dif-
ferences in length correlate with cosine similarity. You may also be able to inspect the files side by side at echoe.uni-
goettingen.de/testing/ to get an eyeball handle on similarity.
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Further watching (optional):

• Vsauce, “The Zipf Mystery” (21m)
Takeaway: This video makes Zipf ’s Law far more transparent, and offers a good deal of insight into some of its likeliest
explanations.

Week 10 (10 June): Classification

Read:

• Bird et al. §§6.1.1–6.1.5, 6.2.1, 6.3 (16 pp., from ch. 6: “Learning to Classify Text”)
Takeaway: A hands-on lesson in classification tasks using machine learning.
Reading notes:

1. Remember to import nltk before reproducing the chapter’s code.
2. Take the “Your Turn” exercise of §6.1.1 seriously: this is where you acquire the skills to adapt a classifier to your

own needs!
3. Tip: if you import string before starting the for loop in example 6.1.2, the line for letter in

'abcdefghijklmnopqrstuvwxyz': may be more comfortably expressed for letter in
string.ascii_lowercase:.

Do:

1. Return to the gendered names exercise of Bird et al. §§6.1.1–6.1.2 and repeat it for names appearing in documents
in England up to the time the Domesday survey was completed (1086). To this end, load pase/female.txt and
pase/male.txt instead of the files supplied with the textbook corpus. (Load and tokenize them using e.g.
male = open('pase/male.txt').read().splitlines(); you can thenuse syntax likefor name in male.)
What features prove to be themost informative for these (modernized!) names? How accurate is your classifier of Old
English names relative to the textbook’s classifier of present-day names? What do you know about thewayOld English
nameswere chosen, how do you suppose these lists were obtained and normalized, and how do these facts complicate
our ability to analyze them for gender in quite the same way as the modern lists? Can you think of other machine-
readable features that might be more revealing?

2. The files pase/female-dupes.txt and pase/male-dupes.txt are like the files mentioned under (1) above, but
without the elimination of duplicates; in other words, these add up to a full index (give or take) of named individuals
whose names have come down to us from or via pre-Conquest England, but stripped down to just their given names,
one per line. What can you learn from these data about relative frequency? (Hint: you will want to research the
Countermodule, which you can import from collections.) And can you confirm whether Zipf ’s law applies to
the frequency of recorded Old English names?

3. Bird et al. §6.1.4 shows howNLTK toolsmay be used to identify informative word suffixes. Canwe apply this to ECHOE
to improve on your week 5 stemming rules for Old English? (Return to week 3 for instructions on how to load ECHOE
intoNLTK’sPlaintextCorpusReader; don’t descend into the “feature extractor function,” as ECHOE is not a tagged
corpus.)

Further reading (optional):

• Bird et al. §§6.4–6.7 (14 pp.)
Takeaway: The remainder of the chapter offers further detail on methods used in classification. Well worth a read if you
intend to undertake any such work yourself!

Week 11 (17 June): Semantic Analysis

Read:

• Lane et al. §§4.1–4.3.5 (26 pp., from ch. 4: “Finding Meaning in Word Counts (Semantic Analysis)”)
Takeaway: A challenging introduction to howmeaning may be computed.
Reading notes:

7

https://www.youtube.com/watch?v=fCn8zs912OE
https://www.nltk.org/book/ch06.html
https://www.nltk.org/book/ch06.html#sentence-segmentation
https://www.nltk.org/book/ch06.html#evaluation
https://www.nltk.org/book/ch06.html
https://www.nltk.org/book/ch06.html#gender-identification
https://www.nltk.org/book/ch06.html#choosing-the-right-features
https://www.nltk.org/book/ch06.html#gender-identification
https://www.nltk.org/book/ch06.html#part-of-speech-tagging
https://www.nltk.org/book/ch06.html#decision-trees


1. Just like the last time we read a chapter from Lane et al., just try to understand the concepts; don’t worry about
reproducing the code. Given the complexity of the material, you’ll want to read this excerpt more than once.

2. Erratum: in Figure 4.3 for “TE-IDF” read “TF-IDF.”
Study questions:

1. §§4.1.1–4.1.2: Having read this section as well as Lane et al. ch. 3, can you draw up a list of advantages and
disadvantages of relying on TF-IDF vectors as a semantic model?

2. §§4.1.4, 4.2: Can you sum up how latent semantic analysis works in under twenty words?

Do:

• Let’s classify ECHOE documents by document topic vector. This can only be done effectively if we create a stopword
list that is considerably better than that included in CLTK, so let’s generate it first and append it to CLTK’s:
>>> from collections import Counter
>>> from nltk.corpus import PlaintextCorpusReader
>>> from cltk.stops.ang import STOPS
>>> root = '/usr/share/corpora/echoe'
>>> echoe = PlaintextCorpusReader(root, '.*')
>>> fdist = Counter(echoe.words())
>>> echoestops = [k for k,v in fdist.most_common(350) if k not in STOPS]
>>> stopwords = STOPS + echoestops
Now we are ready to create our model:
>>> import os
>>> from pprint import pprint
>>> from gensim import corpora
>>> from gensim.models import LsiModel
>>> from gensim.models import LdaModel
>>> import pyLDAvis.gensim_models
>>> from nltk.tokenize import word_tokenize
>>> os.chdir(root)
>>> corpus = []
>>> for i in os.listdir():
>>> tokens = word_tokenize(open(i).read())
>>> stopped = [i for i in tokens if not i in stopwords]
>>> corpus.append(stopped)
>>> dictionary = corpora.Dictionary(corpus)
>>> dtmatrix = [dictionary.doc2bow(doc) for doc in corpus]
We’ll use two models, Latent Semantic Analysis and Latent Dirichlet Allocation:
>>> lsa = LsiModel(dtmatrix, num_topics=5, id2word=dictionary)
>>> ldia = LdaModel(dtmatrix, num_topics=5, id2word=dictionary)
You can now inspect the topics and their composition as follows:
>>> pprint(lsa.print_topics())
>>> pprint(ldia.print_topics())
But you may find it easier to visualize LDiA data as follows:
>>> vis = pyLDAvis.gensim_models.prepare(ldia, dtmatrix, dictionary)
My intention was for an output like this, but that’s not currently happening:
>>> vis
What strikes you about the terms that the respective models choose as the building blocks for their topics?

• The above code might have benefited from the use of a stemmer, but none is available for Old English, other than the
one you wrote for week 5. And at any rate lemmatization might be more effective than stemming at improving topic
modelling accuracy. Lemmatizing all of ECHOE for this task might be a tad resource-heavy, but do you knowwhere in
the pipeline youwould perform it, and how youwould go about it? And howwould you implement your own stemmer
in the above routine?

Further reading (optional):
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• Lane et al. §§4.4–4.8.2 (30 pp., from ch. 4: “Finding Meaning in Word Counts (Semantic Analysis)”)
Takeaway: The remainder of the chapter offers further detail on latent semantic analysis, with emphases on principal
component analysis and LDiA.
Reading note:

1. This excerpt is not supplied on Stud.IP in view of copyright restrictions.

Week 12 (24 June): Word Embeddings

Read:

• Jurafsky and Martin ch. 6: “Vector Semantics and Embeddings” (31 pp.)
Takeaway: An accessible, if occasionally maths-heavy, introduction to inferring meaning from the relationships between
the words in a corpus.
Reading notes:

1. If you are struggling with the chapter, try reading Lynn, “An Introduction toWord Embeddings for Text Analysis”
(3000 words) first.

2. §6.5 revisits TF-IDF, but it exclusively treats it as a method for weighting word vectors. Your understanding of
the technique may benefit from the reading of two complementary angles!

3. Erratum: in formula 6.20, p∗j should read pj .

Do:

• Let’s train a word vector model on ECHOE. Because these models require tokenized sentences as input, we’ll create a
list of sentences (demarcated by linebreaks in ECHOE) prior to tokenization:
>>> import os
>>> root = '/usr/share/corpora/echoe'
>>> os.chdir(root)
>>> allsentences = []
>>> for i in os.listdir():
>>> sentences = open(i).read().splitlines()
>>> for sentence in sentences:
>>> allsentences.append(sentence)
>>> from nltk.tokenize import word_tokenize
>>> corpus = [word_tokenize(sentence) for sentence in allsentences]
To improve accuracy, we may at this point want to scan for set phrases and treat them as units:
>>> from gensim.models.phrases import Phraser, Phrases
>>> from collections import Counter
>>> fdist = Counter([inner for outer in corpus for inner in outer])
>>> commonTerms = [k for k,v in fdist.most_common(250)]
>>> phrases = Phrases(corpus, common_terms=commonTerms)
>>> bigram = Phraser(phrases)
>>> corpus = list(bigram[corpus])
We are now ready to configure and run our model:
>>> from gensim.models import Word2Vec
>>> model = Word2Vec(corpus, min_count=1, size=300, workers=2, window=5, iter=30)
This may take a minute or so. Once training is complete, you can test the model using queries like the following:
>>> model.wv.most_similar('deofol')
>>> model.wv.most_similar('niht')
>>> model.wv.most_similar('mæden')
>>> model.wv.most_similar('wop')
>>> model.wv.most_similar('blis')
>>> model.wv.distance('wer', 'cild')
>>> model.wv.distance('wif', 'cild')
>>> model.wv.distance('wer', 'wif')
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>>> model.wv.distance('mæden', 'cniht')
>>> model.wv.distance('wop', 'blis')
What strikes you about the results you are getting? Where do you see room for improvement? Are you able to improve
your model e.g. by tweaking the values of min_count, size, and window, or by subtly changing the final digit in the
default setting sample=1e-3, or by extending the list of common terms? What other queries can you think of that
may be of particular value in gauging model accuracy?

• As Lynn demonstrates, each attested term has its own vector, which can be called as e.g. model['cyning'], and can
be used in arithmetic functions like model.wv.similar_by_vector(model['cyning'] - model['mann']
+ model['wif']). Is this an effective line of enquiry for our corpus? Explain. And what if we use DOEC instead of
ECHOE as our corpus?

Further reading (optional):

• Lynn, “An Introduction to Word Embeddings for Text Analysis” (3000 words)
Takeaway: An accessible introduction to word vector modelling.

• Lynn, “Word Embeddings in PythonWith Spacy and Gensim” (2000 words)
Takeaway: A hands-on demonstration of word vector modelling.
Reading note:

1. Erratum? Under “Word Similarities / Synonyms,” the list of examples seems to have already been introduced in
a passage that has not made it into the final text of the post.

Reading note:
1. The functions here based at model.similarity() and model.most_similar() have been deprecated in

favour of
model.wv.similarity() and model.wv.most_similar().

• Lane et al. ch. 6: “Reasoning With Word Vectors (Word2vec)” (36 pp.)
Takeaway: A fuller introduction to Word2vec, GloVe, and the algebra underlying them.
Reading note:

1. This excerpt is not supplied on Stud.IP in view of copyright restrictions.

Week 13 (1 July): Neural Networks

Read:

• Lane et al. ch. 5: “Baby Steps With Neural Networks (Perceptrons and Backpropagation)” (25 pp.)
Reading notes:

1. Erratum: On p. 162, the instruction to from random import random is unnecessary since you end up using
NumPy’s builtin randommodule.

2. If you run listing 5.4, import sgdexperimentalinsteadofSGDfromkeras.optimizers; thesyntaxisthen
Takeaway: A glimpse into the mechanics of machine learning.
Study questions:

1. What is bias for?
2. What is the XOR logical operator?
3. What problem does backpropagation solve?
4. Explain local and global minima, batch and stochastic training strategies.
5. What is overfitting?

• Korolev, “Neural Network to Play a Snake Game” (1300 words)
Takeaway: A playful walkthrough of the most basic principles of machine learning.
Reading note:

1. Many game demos may be found along similar lines: here’s TicTacToe, Tank, Car, and MarI/O.

Do:
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• Spend some time in TensorFlow’s Neural Network Playground. Pay attention to the loss graph as well as the output
graph as you run eachmodel. What happens if you use a linear model on XOR data? Can you find a configuration that
solves spiral data to an acceptable loss rate within 500 epochs?

Further watching (optional):

• Sanderson (3Blue1Brown), “Neural Networks” (4 videos, 1 hour total)
Takeaway: This excellent calculus channel offers a great explainer of the same subject matter introduced in the chapter
from Lane et al.

Week 14 (8 July): Drag-and-Drop Tools

Do:

• Try out the translation services at glosbe.com/en/ang and oldenglishtranslator.co.uk. What can you infer about the
mechanisms behind these web applications? What shortcomings do you notice, and howwould you go about tackling
them if you were the developer? Can you think of better approaches to translation?

• Try the tools at lexos.wheatoncollege.edu. (If you don’t have any Old English texts to work with, paste a few items
from the Wikisource page for Ælfric of Eynsham.) Do their similarity query and vocabularity density functions yield
results similar to those of your lexical diversity analysis for week 3 and your TF-IDF query for week 9? Howmight any
differences in evaluation have arisen?
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