
Software
Course documentation for students of Dead Language Processing

P. S. Langeslag

April 6, 2025

Contents
Overview 1

Local IDE: The Better Way . 2
JupyterLab Remote: The Fallback Option . 2

Local IDE Walkthrough 2
Software and Plugins . 2

Anaconda: The Easy Way . 3
pip and pyenv: The Traditional Approach 3
Git and Visual Studio Code . 3

GitLab Access . 4
Package Management . 5

JupyterLab Remote Walkthrough 5
Accessing JupyterLab Remote . 5
GitLab Access . 5
Package Management . 7
Notebook or Console? . 7

Notebook Modes and Commands 8

Markdown 8

Overview
This course will have you producing and running Python code. Rather than working in a
terminal-based interpreter as described in our textbook, we will take advantage of Jupyter
Notebooks, an environment allowing us to work either in-browser or in an integrated de-
velopment environment (IDE, essentially an advanced code editor) and divide our code up
into cells that we can save, modify, reorder, and rerun as needed, as well as intersperse with
full Markdown documentation. This guide will help you get set up. If you’re new to this

1

https://langeslag.uni-goettingen.de/dlp/
https://www.nltk.org/book/
https://www.freecodecamp.org/news/what-is-an-ide-in-programming-an-ide-definition-for-developers/

sort of thing, set aside plenty of time and prepare to follow a lot of manuals, ideally before
the start of term! If you run into any obstacles, you may find solutions online; you can also
use the Stud.IP forum to ask your peers for tech support as required.

Local IDE: The Better Way
If you can stomach setting up Python, Jupyter, and Git locally, I recommend you do so,
and then install an IDE with Jupyter support; try Visual Studio Code (aka VS Code or
Code) with the Jupyter extension, following the below instructions. A local installation
has the major advantage that you will only have to install the necessary Python packages
once. However, if you choose to go this way, you should be aware that one of the libraries
we’ll use, CLTK, is only officially compatible with Python 3.7, 3.8, and 3.9, while another,
gensim, requires a Python version no greater than 3.11. For this reason, and also for rea-
sons of general best practice, you are strongly advised to set up a Python installation and
environment manager, for instance by installing the Anaconda distribution of Python that
comes standard with Jupyter and environment management included; or else look into
pyenv. VS Code has its own guides to installing Python and using it in VS Code, and to
Python environments. There’s a great introduction to pyenv at Real Python.

JupyterLab Remote: The Fallback Option
If you are new to all this, and setting up Python 3.9, Jupyter, and Git is beyond you, you
may alternatively choose to work in-browser in GWDG’s remote JupyterLab instance at
https://jupyter-cloud.gwdg.de, following the instructions below. The main obstacle to
recommending this as the easier approach is that you will ideally have to set up SSH keys
in order to access the course repository on GitLab; but if you can’t manage that, you can
alternatively download the code from GitLab manually and upload it to your JupyterLab
environment yourself. An additional drawback to using the remote instance is that al-
though your work is safely stored, Python packages are lost between sessions and will have
to be reinstalled every time you do a stint of work. Furthermore, GWDG’s instance of
JupyterLab no longer offers Python 3.9, so you may run into compatibility issues when us-
ing CLTK, affecting perhaps a week or two of your work. (Once they upgrade to 3.12, work
involving gensim may also be affected.) On the other hand, an advantage of the GWDG
environment is that it allows your instructor to reproduce any issues exactly, and all demo
notebooks used in the course have been tested against it, whereas your instructor cannot
help you with any local package conflicts or other software issues if you install Python on
your own system. Additionally, the remote option saves you from having to set up Python,
Jupyter, and Git yourself. Even so, you are probably best off trying a local installation first,
and switching to the online option only if you can’t get that to work.

Local IDE Walkthrough
Software and Plugins
In order to make use of VS Code’s Python, Jupyter, and Git functionality, you will have
to install their standalone distributions first. For Python and Jupyter, you have a choice

2

https://code.visualstudio.com/
http://cltk.org/
https://www.anaconda.com/
https://github.com/pyenv/pyenv
https://code.visualstudio.com/docs/python/python-tutorial
https://code.visualstudio.com/docs/python/environments
https://realpython.com/intro-to-pyenv/
https://jupyter-cloud.gwdg.de

between two overall strategies.

Anaconda: The Easy Way
The easiest solution for Python and Jupyter is to install Anaconda, a Python distribution
that comes standardwith Jupyter and Python version/environmentmanagement. To install
Anaconda, head to anaconda.com and select “Free Download”, look for the small print to
“skip registration” to download the installer without sharing your email address (unless
you don’t mind), and select your operating system and processor architecture. You will
need a few gigabytes of free disk space. When opening Anaconda Navigator, you can, if
you like, dismiss prompts to set up an account to gain access to AI assistance and other
online features. At this point you may want to update Anaconda Navigator to the latest
version before undertaking further action. Next, to set up an environment with Python
3.9.18, launch the Anaconda Prompt from within Anaconda Navigator and enter

conda create --name nlp -c anaconda python=3.9.18

and confirm when prompted; or follow these instructions to use the graphical Navigator
app to do the same. Once done, the second dropdown menu at the top of your Anaconda
Navigator Home screen will give you access to a new environment “nlp” in addition to “base
(root)”. Activate the new environment in the “Environments” tab by clicking on it, then
return to the Home screen and continue with Git and Visual Studio Code below. Going
forward, always just check that the correct environment is active before launching any of
your apps from within Anaconda Navigator.

pip and pyenv: The Traditional Approach
If you prefer to use the more traditional pip package manager over conda, you will want to
go over the installation instructions at Real Python, or at least the briefer installation notes
at the top of VS Code’s Get Started With Python tutorial. You will have to install Jupyter
Notebooks separately. Basic installation instructions are at jupyter.org, but they assume
you are comfortable with Python package management already; pip instructions are here,
and even they assume you know to open a terminal (inWindows, use PowerShell) and issue
your commands there; as per usual, the relevant Real Python article has more detail. This
is also the point at which you’ll want to install a Python version and environment manager;
pyenv does both (see the relevant Real Python article for guidance).

Git and Visual Studio Code
Once you are set up with a Python distribution, your next step is to install and configure Git.
Configuration can be as simple as entering two lines like the following into your terminal
(or entering your name and email into a graphical cofiguration assistant):

git config --global user.name "Firstname Lastname"
git config --global user.email your.email@stud.uni-goettingen.de

Now if Visual Studio Code does not already show up in Anaconda Navigator, look for
it in your operating system’s package manager (“app store”), or download it from https:
//code.visualstudio.com and install it to your system. Depending on your operating system,

3

https://www.anaconda.com/
https://docs.anaconda.com/navigator/tutorials/manage-environments/#creating-a-new-environment
https://realpython.com/installing-python/
https://code.visualstudio.com/docs/python/python-tutorial
https://jupyter.org/install
https://pip.pypa.io/en/stable/getting-started/
https://realpython.com/what-is-pip/
https://github.com/pyenv/pyenv
https://realpython.com/intro-to-pyenv/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://code.visualstudio.com
https://code.visualstudio.com

you may have a choice of distributions. In that case, installing the proprietary Microsoft
release ensures you will have access to all the necessary extensions.

Once you have it installed, launch Code and open the extensions manager (Ctrl+Shift+X)
to install the extensions entitled Python (by Microsoft), Python Environments (by Mi-
crosoft; agree to install the pre-release if no final release is available), Jupyter (byMicrosoft),
and GitLab Workflow (by GitLab). If you cannot find Python Environments, it may be be-
cause you have installed the open-source implementation of VS Code rather than the proprietary
Microsoft release.

GitLab Access
We’ll want to enable VS Code to access the course repository directly using its GitLab
Workflow extension. This requires that you create a personal access token for your GitLab
account. Log in at https://gitlab.gwdg.de, click on your avatar and select “Edit profile”,
then open “Access tokens” from the navigation bar on the left and “Add new token”. Call it
“VS Code” or similar, select the api scope, set an expiry date up to a year in the future but
at least beyond the end of term, save the token and then copy it to your clipboard (and leave
this page open just in case). In VS Code, open the Command Palette (Ctrl+Shift+P), start
typing “GitLab” and select “GitLab: Authenticate”. Select “Manually enter instance URL”,
enter https://gitlab.gwdg.de as your instance URL, then paste in the access token.

Now you have everything you need to clone the repository. Make sure to close any active
folder within VS Code (File → Close Folder), then head to Source Control (Ctrl+Shift+G).
You should now be promted to enter a repository URL (and if everything has gone well
so far, you should see an option “Clone from GitLab (https://gitlab.gwdg.de - username)”
below the input field; but don’t select it). Copy in https://gitlab.gwdg.de/langeslag-
teaching/dlp.git; or if prompted to enter the server address first, select or enter
https://gitlab.gwdg.de and then copy in the repository URL as the next step. At this
stage, you may be prompted for your user name and the access token a second time, so
keep your GitLab tab open to the Access token page, as you won’t be able to access it
afterwards. Select the containing folder within which you wish your repository folder
to be located (e.g. Documents/Uni/DLP/). Once the download is complete, you should
be prompted to open and trust the contents of the new folder. Now when you open any
of the Jupyter Notebooks in the folder (that’s the files with a .ipynb extension), the
option “Select Kernel” in the topright corner should give you a choice from among the
environments you have set up; for instance, if you have used pyenv or conda to install
Python 3.9.18 and have created an environment nlp associated with this Python version,
then clicking “Python Environments…” should give you access to “nlp (Python 3.9.18)”,
and if it’s already active it will be preceded by a star. If you don’t use Python much outside
this course, you may as well make this environment your default. Take a breather; you are
now all set up, and can return to your work in future simply by opening VS Code (and
reopening the course repository folder if it’s not still open on your return).

If you run into obstacles in any part of this process and fail to find solutions online or
among your peers, please get in touch with your instructor early so you don’t get behind
on your homework. At the same time, please understand that every machine has its own

4

https://gitlab.gwdg.de

configuration entailing its own complications, and your instructor can do no more than
offer suggestions. While you wait for guidance, set up a JupyterLab remote environment
following the instructions below just in case.

Package Management
Python package management is traditionally done from the command line, using a com-
mand conda or pip. In VS Code, with our repository folder open, select “Terminal” and
“New Terminal” (or Ctrl+Shift+` on US keyboards) to open a terminal window with the
current folder as its working directory. You can install individual packages by issuing com-
mands like conda install gensim or pip install gensim, depending on your package
manager; but our repository contains a file requirements.txt listing all the packages used
for your homework. To install all of these with conda, issue

conda install --file requirements.txt

or for pip:

pip install -r requirements.txt

from within the repository folder. Please take note of any errors you encounter; these will
generally result from conflicts between installed and required packages. Also remember
that if you have activated a virtual environment for this folder (e.g. by selecting it in Ana-
conda, or by issuing pyenv local nlp to permanently associate the current folder with a
virtual pyenv environment named nlp), packages are installed in that virtual environment,
whereas if you haven’t, they are installed to your global Python installation or Anaconda
base environment.

JupyterLab Remote Walkthrough
Accessing JupyterLab Remote
If you run into any insurmountable issues when trying the local install, first activate your
GitLab account by logging in at https://gitlab.gwdg.de if you have never done so before.
Then, in a second browser tab, log in at https://jupyter-cloud.gwdg.de. You may select
the default image if prompted. If you aren’t returning to an active or saved workspace,
JupyterLab should open to a launcher window (see Figure 1). Fromhere, you can technically
select Python 3 in the Notebook (or Console, see below) category to start coding. However,
you’ll probably want to create a new directory for each course or project you undertake; and
furthermore, you’ll want to clone the course’s GitLab repository, which creates a course
directory and copies in all the required files. So that’s what we’ll do next.

GitLab Access
In the JupyterLab launcher window, from the category “Other” select “Terminal”. This
opens a command-line interface answering to many of the same commands you may know
from UNIX-like systems such as Linux or macOS. We now get to the trickiest part of the

5

https://gitlab.gwdg.de
https://jupyter-cloud.gwdg.de

remote JupyterLab solution: setting up SSH keys and exchanging them with GitLab. The
following steps should do the trick:

1. In your JupyterLab terminal, enter ssh-keygen -t ed25519 -C "your.name@stud.uni-
goettingen.de" and hit Enter to confirm defaults at each of three steps (including
the passphrase prompts) until you are returned to the command line prompt.

2. Now enter cat ~/.ssh/id_ed25519.pub.
3. The output of the above command should start with ssh-ed25519 and end with

your email address, or whatever other value you entered after -C in step 1. Select
this complete output, nothing more or less, with your mouse or touch interface, and
right-click (or Command+click; or long press?) to bring up the context menu and
select “Copy”.

4. Now return to your GitLab browser tab, click on your avatar, “Edit profile”, “SSH
Keys”, “Add new key”, and paste your public key into the Key field. Give it a title like
“GWDG JupyterLab”, ensure that the usage type includes at least authentication,
and set an expiration date beyond the current term.

(Cf. these fuller instructions, the relevant sections being Generate an SSH key pair and
Add an SSH key to your GitLab account; follow the instructions for Linux, but note that
the clipboard solution here given won’t work in JupyterLab).

If everything has gone according to plan, you should now be able to clone the repository
by pasting the following command into your JupyterLab terminal and hitting Enter:

git clone git@gitlab.gwdg.de:langeslag-teaching/dlp.git

You may be prompted to type yes to trust the fingerprint. This should create a folder dlp
and populate it with our course files. The folder will appear in the file system in the left-
hand pane. Once it’s done cloning, you can close the terminal window (click x or type exit)
and double-click the dlp folder on the left. Nothing changes except the current folder (or
“working directory”). Now if you start Python 3, the files you’ve pulled in are available
within your working directory.

If you fail to set up GitLab access, you can instead point your browser to https://gitlab.g
wdg.de/langeslag-teaching/dlp, select “Code” and “Download source code: zip”, extract
the archive locally, then use the Upload function in JupyterLab to store the files in a folder
below your home folder in the remote instance of JupyterLab.

If the course materials should ever be updated in the course of the term, you’ll have to
update your working copy to take advantage of these changes. To do so, enter the dlp folder
in the file system, launch a terminal window, and enter git pull. Once the line Writing
objects reaches 100%, your working copy is up to date and you can close the window. If
you receive a warning that your working copy contains changes not in the master branch,
that’s where Git gets more complicated; try this guide. If you have manually uploaded the
course materials, you can simply repeat that process for updated files. Do make sure not
to lose any files you have yourself created; this can be avoided in either scenario by writing
only to files with file names other than those tracked by the repository.

6

https://gitlab.gwdg.de/help/user/ssh.md
https://gitlab.gwdg.de/help/user/ssh.md#generate-an-ssh-key-pair
https://gitlab.gwdg.de/help/user/ssh.md#add-an-ssh-key-to-your-gitlab-account
https://gitlab.gwdg.de/langeslag-teaching/dlp
https://gitlab.gwdg.de/langeslag-teaching/dlp
https://rogerdudler.github.io/git-guide/#checkout-replace

Figure 1: JupyterLab’s interface: file system on the left, launcher on the right.

Package Management
Our textbooks assume that you have access to a Python package manager, usually pip or
conda, on the command line. GWDG’s remote instance of JupyterLab in fact incorporates
pip directly into the interpreter, so to install a Python package like nltk you can type pip
install nltk directly into your notebook or console, or you can take themore conventional
route and do your package management from within a terminal window.

The remote instance of JupyterLab does not save your Python libraries: the next time you
log in, your packages will be gone. To install all the packages required for this course be-
fore you start a stint of work, you can open a terminal window and run pip install -r
requirements.txt from within the dlp/ folder. This takes time, though, and is overkill
if you just need one or two packages. Instead, whenever you start out work with one or
more non-stock libraries, you can just install the ones you need (e.g. pip install nltk
gensim). Likewise, if in your work you ever encounter an error along the lines of Modu-
leNotFoundError: No module named 'gensim', simply install the missing package (pip
install gensim) and get on with your work. cltk has a lot of package dependencies, so
pip install cltk takes a little longer, but also covers nltk, numpy, scipy, and scikit-
learn in one go; so simply starting any notebook with pip install cltk (ignore the
warnings) will often get the job done, too.

Notebook or Console?
JupyterLab offers two interfaces: Notebook and Console. You can technically do your
homework in either one, but if you want to save or submit any of your work you may want
to opt for the notebook. The console offers a traditional interactive interpreter experience;
the notebook is often considered more useful in a learning setting because you can save and
export your work, you can reorder and rerun your code blocks, and you have formatting
options (Markdown, or even LATEX) for any notes you wish to take. You can also open a
console alongside a notebook that is aware of functions and variables set in the notebook
(File → New Console for Notebook). Finally, to ease your workload I have done some of
your coding for you and made it available in the repository in the form of notebooks. So

7

all things considered, you’ll probably want to do your final work in a notebook but any
experimental work and “exploration” in a console spawned within your notebook session.
The textbooks we’ll use assume a regular interactive interpreter, but their exercises will
work just as well in a notebook.

Notebook Modes and Commands
Like the Vim editor popular among programmers, the Jupyter Notebook interface has a
command mode and an edit mode. When you open a notebook, it is in command mode
and will respond to keyboard commands like the following:

Enter Enter edit mode
Shift+Enter Run cell code
k or arrow Navigate up
j or arrow Navigate down
a Add a cell above
b Add a cell below
y Change cell mode to code
m Change cell mode to Markdown
dd Delete current cell

Once in edit mode, you have access to commands like the following:

Esc Enter command mode
Shift+Enter Run cell code and command new cell below

For more keyboard shortcuts, see e.g. here.

Markdown
Markdown is an efficient structured text format which it is well worthmastering, as it is the
most convenient and powerful format in which to write nearly all the documents you need
in your professional and personal life (except spreadsheets or complex tables). Fuller guides
are all over the web (my own is here), but the short version is that it relies on formatting
cues like the following:

Top-level headings receive one hash/pound sign

Lower-level headings receive two

Paragraphs are ended by double line breaks.

Like so.

8

https://www.vim.org/
https://www.edureka.co/blog/wp-content/uploads/2018/10/Jupyter_Notebook_CheatSheet_Edureka.pdf
https://pandoc.org/MANUAL.html#pandocs-markdown
https://langeslag.uni-goettingen.de/tflow/slides/11_Markdown.pdf

[Links](https://are.encoded.thus) or they may be encoded <https://thus.ly>

```python
Code demonstrations ("listings") are set off within triple backtick delimiters.
```

The relevance of Markdown to Jupyter Notebooks is that it is the format for note-taking
cells. You can toggle the format of a selected cell from code to Markdown with the y and m
keybindings (press Esc first if in edit mode), or using the dropdown menu. A Markdown
cell serves to document or annotate your code, or to create logical sections within a Python
script.

9

	Overview
	Local IDE: The Better Way
	JupyterLab Remote: The Fallback Option

	Local IDE Walkthrough
	Software and Plugins
	Anaconda: The Easy Way
	pip and pyenv: The Traditional Approach
	Git and Visual Studio Code

	GitLab Access
	Package Management

	JupyterLab Remote Walkthrough
	Accessing JupyterLab Remote
	GitLab Access
	Package Management
	Notebook or Console?

	Notebook Modes and Commands
	Markdown

