
CLTK

P. S. Langeslag

March 15, 2024

Contents
Preface 1

Lining Up Text 1

Default Pipeline Functionality 2
Old English . 3
Middle English . 4
Latin . 4

Additional Functionality 4
Detailed Output . 4
Additional Utilities . 5

Appendix 1: Installation 6

Appendix 2: Downloading Corpora 7

Preface
This guide was written as required reading for a humanities course on natural language
processing (NLP) to offer more guidance and a lower point of entry than is given in CLTK’s
official demo notebook, let alone in the official documentation. I’m using the opportunity
to explain a few other concepts about Python because my audience is largely new to it.
As I’m not myself a CLTK contributor, I cannot vouch for the below instructions being
accurate in every respect.

Please note that CLTK 1.0 contains vestiges of the legacy 0.1.x releases that no longer
serve as much of a purpose for the user. Some such functionality, including the corpus
downloader, is here described in appendices rather than in the document’s body.

Lining Up Text
Having discontinued the corpus reader found in 0.1.x releases, CLTK 1.0 expects you to
identify one or more documents directly on disk as input for processing. For the purposes
of our course, a plaintext corpus of Old English homiletic prose has been made available;

1

https://github.com/cltk/cltk/blob/master/notebooks/CLTK%20Demonstration.ipynb
https://docs.cltk.org/en/latest/

the below code assumes this is available at echoe/. As you won’t know the contents of the
corpus off by heart, you may want to inspect this director with help from the os module:

>>> import os
>>> os.listdir('echoe/')

You can then open and read individual files as follows:

>>> v9file = open('echoe/394.11.txt')
>>> v9 = v9file.read()
>>> v9
'men ða leofestan ...'

Alternatively, you can use NLTK’s corpus reader as explained in the NLTK textbook:

>>> from nltk.corpus import PlaintextCorpusReader
>>> corpus_root = 'echoe'
>>> echoe = PlaintextCorpusReader(corpus_root, '.*')

You can then list available files as follows:

>>> echoe.fileids()
['018.40.txt', '018.42.txt', '021.27.txt', '021.28.txt', ...]

and open individual files as follows:

>>> v9 = echoe.raw('394.11.txt')

But an advantage of the corpus reader is that you can alternatively prepare the entire corpus
for analysis (just be forewarned that the processing of a substantial corpus will take some
time, and if your pipeline includes a lemmatizer you will run out of memory fast):

>>> corpus = echoe.raw()

If you want to evaluate a different text or corpus that is not yet in plaintext, you will have
to either parse or strip it first. For instance, you can parse HTML or XML using the
BeautifulSoup module from the bs4 package as follows:

>>> from bs4 import BeautifulSoup
>>> raw = open('somefile.html')
>>> soup = BeautifulSoup(raw, 'html.parser')
>>> text = soup.get_text()

While you may alternatively clean up your corpus before loading it in Python, doing all
your preprocessing in a Python script is the better approach in terms of both transparency
and reproducibility.

Default Pipeline Functionality
The functionality shown in the official demo notebook is available off the shelf, with the
important caveat that the demo is centrally focused on Latin because it has the most com-
prehensive pipeline. The present section similarly confines itself to a selected few languages,
but it explains CLTK functionality available directly within Python at greater length.

2

https://www.nltk.org/book/ch02.html#loading-your-own-corpus
https://github.com/cltk/cltk/blob/master/notebooks/CLTK%20Demonstration.ipynb

Old English
The only CLTKmodule we normally need to import is cltk.NLP. We then tie the NLPmod-
ule to a process variable specifying the language with which we’ll be working. In response,
the interpreter outputs the full list of processes available for that language:

>>> from cltk import NLP
>>> pipeline = NLP(language='ang')
�� CLTK version '1.0.24'.
Pipeline for language 'Old English (ca. 450-1100)' (ISO: 'ang'):
`MultilingualTokenizationProcess`, `OldEnglishLemmatizationProcess`,
`OldEnglishEmbeddingsProcess`, `StopsProcess`, `OldEnglishNERProcess`.

For Old English, CLTK ships with a language-independent tokenizer and language-
specific stopword and lemma lists. It draws on an external library (fastText) with Old
English support for word embedding (i.e. vector modelling). Although it claims to have
a language-specific named-entity-recognition (NER) process, this process appears to be
essentially empty: unlike in the Latin model, the Old English directory structure within
the cltk_data folder lacks a list of proper names, and it employs a library (spaCy) that
has no support for Old English. What we can expect CLTK to do off the shelf, then, is
tokenize, lemmatize, and vector model.

CLTK has been set up to run the pipeline with all these processes (the default) or a hand-
culled selection of them, then inspect the results. Thus for instance:

>>> processed = pipeline.analyze(text=v9)
>>> processed.tokens[:12]
['men', 'ða', 'leofestan', 'we', 'geleornodon', 'on',
'godcundum', 'gewritum', 'þæt', 'æghwylces', 'monnes',
'sawul']
>>> processed.lemmata[:12]
['mann', 'þa', 'leofestan', 'we', 'geleornodon', 'on',
'godcundum', 'gewrit', 'þæt', 'æghwylces', 'monnes',
'sawul']

Note that in this usage whenever it fails to identify a lemma, it returns the inflected form
as found (leofestan, geleornodon, etc.).

With Old English, there isn’t much else you can do but lemmatize, but you can ask CLTK
whether a given token is registered as a stopword, which may be of some limited use in
further processing:

>>> processed.words[0].stop
False
>>> processed.words[1].stop
True

Another way of querying data is through the words accessor, which organizes what has
been learned on a per-token basis. For Old English, this means you can access word form
and inferred lemma from a single object.

>>> processed.words[0]
Word(index_char_start=0, index_char_stop=3, index_token=0,
index_sentence=None, string='men', pos=None, lemma='mann',

3

stem=None, scansion=None, xpos=None, upos=None,
dependency_relation=None, governor=None, features={},
category={}, stop=False, named_entity=False, syllables=None,
phonetic_transcription=None, definition=None)

>>> for token in processed.words[:3]:
... print(token.string, 'is a form of', token.lemma)
men is a form of mann
ða is a form of þa
leofestan is a form of leofestan

The final functionality available for Old English is word embeddings. Thismay not look like
much when queried directly (try querying processed.embeddings[0]), but these “vectors”
or lists of logarithms store valuable data on each form’s relationships to other word forms
in the corpus. This means that if we process a large enough corpus, we have access to a
great deal of implicit semantic information, as we’ll learn in week 12.

Middle English
Although CLTK claims a Middle English pipeline, it contains no more than a stopword
list, in addition to the universal tokenizer:

>>> pipeline = NLP(language='enm')
�� CLTK version '1.0.24'.
Pipeline for language 'Middle English' (ISO: 'enm'):
`MiddleEnglishTokenizationProcess`, `StopsProcess`.

Latin
To demonstrate the capabilities of CLTK more fully, we will have to resort to Latin. That
pipeline is demonstrated in the official demonstration notebook, so there is no need to
rehearse it here. For completeness’ sake, here is the pipeline prompt for Latin:

>>> pipeline = NLP(language='lat')
�� CLTK version '1.0.24'.
Pipeline for language 'Latin' (ISO: 'lat'):
`LatinNormalizeProcess`, `LatinStanzaProcess`,
`LatinEmbeddingsProcess`, `StopsProcess`,
`LatinNERProcess`, `LatinLexiconProcess`.

Additional Functionality
Detailed Output
As we saw above, the Old English lemmatizer as contained in the default pipeline returns
either a headword or, if none is found, the input string. However, the underlying function
has two optional arguments with which we may tweak this return: best_guess=False,
which causes it to return all hits rather than just the one it considers the most likely, and
return_frequencies=True, which returns the logarithm of the returned headword’s rel-
ative frequency in the underlying word list. To access this functionality, we can call the
function directly, bypassing the pipeline:

4

https://github.com/cltk/cltk/blob/master/notebooks/CLTK%20Demonstration.ipynb

>>> from cltk.lemmatize.ang import OldEnglishDictionaryLemmatizer as lem
>>> lem.lemmatize_token('man')
'man'
>>> lem.lemmatize_token('man', return_frequencies=True, best_guess=False)
[('mann', -6.829400539827225), ('man', -4.832846657953158)]

In the above example, the form “man” may represent either the impersonal pronoun man
“one,” identical in meaning and origin to Germanman, or it may be the nounmann “person;
man,” similar in meaning to GermanMann. If we run the lemmatizer with default options,
all it returns is the likeliest headword, i.e. the pronoun. With the two optional arguments, it
returns a list of tuples, each of which consists of a headword and the logarithm of its relative
frequency in the word list. As these are all negative logarithms, whichever is closest to zero
is evaluated as the likeliest headword, while absolute zero means only one match has been
found. To evaluate a document as opposed to a single word form, you’ll have to tokenize it
first:

>>> sample = 'MEN ða leofestan manað us and myngaþ þeos halige boc þæt we \
sien gemyndige ymb ure sawle þearfe'
>>> from nltk.tokenize.punkt import PunktLanguageVars as punkt
>>> tokens = punkt.word_tokenize(sample.lower())
>>> lem.lemmatize(tokens, return_frequencies=True, best_guess=False)
[[('mann', -6.829400539827225)], [('þe', -3.109198614584248),
('ða', -3.1405210857132895), ('þa', -2.344858341627749),
('se', -2.9011463394704973)], [], [], [('we', -5.037641070599171),
('us', -5.826098430963441)], [('and', -2.8869365088978443)], [], ...]

Note that with these settings, an input with no hits returns an empty value ([]) with no
frequency data.

Additional Utilities
CLTK offers a few utilities additional to those integrated into the pipeline. For Old En-
glish, we have access to a syllabifier, an IPA transcription utility, and a transliterator of Old
English runes. These may be used as follows:

>>> from cltk.phonology.ang.transcription import Transcriber
>>> Transcriber.transcribe('habbað ǣfre ānrǣdne ġelēafan')
'hɑbːɑð æːfre ɑːnræːdne jelæːɑvɑn'

>>> from cltk.phonology.ang.phonology import OldEnglishSyllabifier
>>> syll = OldEnglishSyllabifier()
>>> syll('monan')
['mo', 'nan']

>>> from cltk.phonology.ang.transliteration import Transliterate
>>> Transliterate.transliterate('ᚱᚩᛗᚹᚪᛚᚢᛋ ᚪᚾᛞ ᚱᛖᚢᛗᚹᚪᛚᚢᛋ ᛏᚹᛟᚷᛖᚾ ᚷᛁᛒᚱᚩᚦᚫᚱ')
'romwalus and reumwalus twoegen gibrothær'

Please be advised that these utilities are not to be taken as authoritative for the purposes
they were designed to serve. Also please note that the syllabifier only takes a single word
at a time as input.

5

Appendix 1: Installation
This appendix may be of interest if you’re looking to install CLTK on your local machine,
and it may help solve or at least explain some issues if you’re relying on JupyterCloud or
JupyterWeb.

CLTK 1.0 only supports Python 3.7, 3.8, and 3.9 on POSIX-compliant operating systems
(e.g. macOS or Linux). As these are somewhat dated versions of Python now, you’ll most
likely want to work with a Python version manager such as pyenv, which allows you to
switch between multiple versions of Python as needed. Real Python has a great introduc-
tion to pyenv; as the process of installing it can be a little involved, I won’t repeat it here.
Once you’ve installed it, you’ll want to use it to install a compatible version of Python as
follows:

pyenv install -v 3.9.10

You’ll ideally want to set up a virtual environment where you can run CLTK not just on
retro Python but also with the specific dependencies it needs, in isolation from your system-
wide Python setup. This is because CLTK has highly specific version requirements and
may not always work with the latest version of a required package. To install CLTK using
pip in a virtual environment, first set up the environment and give it a title (here “nlp”) as
follows:

pyenv virtualenv 3.9.10 nlp

Then if your project directory is to be located at ~/python/nlp/, change to that working
directory and enter:

pyenv local nlp

Test whether the correct version of Python is running as follows:

pyenv which python
python -V

If the first response points to a folder containing your project name, and the second reports
the desired version of Python, you may proceed:

pip install cltk

pip will automatically pull in compatible versions of all dependencies and install them
below your project folder rather than in your system-wide sites-packages/ folder. It is
important to activate your virtual environment whenever you start working with it, but if
you have eval "$(pyenv virtualenv-init -)" set up in your environment this should
be done automatically, and you can set up your shell prompt to reflect this.

CLTK will create a folder cltk_data/ in which it stores your downloaded corpora and lan-
guagemodels. By default, this folder is created directly within your home folder, even when
working within a virtual environment, though (supposedly!) setting the environment vari-
able $CLTK_DATA (e.g. by adding CLTK_DATA="/home/username/python/nlp/ cltk_data"
to your ~/.bashrc) should give you control over where it goes.

6

https://realpython.com/
https://realpython.com/intro-to-pyenv/
https://realpython.com/intro-to-pyenv/

Appendix 2: Downloading Corpora
CLTK has a function FetchCorpus() that links to repositories for a range of premodern
corpora. For Old English, it offers the complete Old English poetic corpus, which it down-
loads in HTML format, then converts to JSON so it may be accessed in Python (though
it fails to strip out tags meant to indicate emendations in the print edition). The
other Old English “corpus” on offer is in fact CLTK’s Old English model, which allows
us to explore the package’s processing strategies in isolation from the general pipeline; but
that model is downloaded the first time we run the NLP on an Old English text, so there
is no need to download it separately. There is surely more value in downloading the Latin
and Greek corpora.

A full list of all linked corpora may be obtained by issuing

>>> import cltk
>>> cltk.data.fetch.LANGUAGE_CORPORA.values()

or, to sort them by language:

>>> cltk.data.fetch.LANGUAGE_CORPORA.items()

Both these lists are rather hard to read, however. It may help to print the values one per
line, like so:

>>> print(*cltk.data.fetch.LANGUAGE_CORPORA.values(), sep="\n")

or you can narrow down by language. To this end, you’ll need the relevant language codes.
These are contained in cltk.languages.glottolog.LANGUAGES, though to print them in
an acceptably clean list would require a few lines of code. Instead, it may help to know that
the languages codes used follow the ISO 639-3 standard, with values like the following:

Table 1: Selection of medieval northern European language codes in the ISO 639-3 standard

Code Language
ang Old English
enm Middle English
gmh Middle High German
goh Old High German
grc Acient Greek
lat Latin
non Old Norse
osx Old Saxon/Old Low German

Alternatively, youmay search CLTK’s index of languages using part of a language’sModern
English name as a keyword string:

>>> cltk.languages.utils.find_iso_name('english')
['enm', 'ang']
>>> cltk.languages.utils.get_lang('ang')
Language(name='Old English (ca. 450-1100)', glottolog_id='olde1238',
latitude=51.06, longitude=-1.31, dates=[], family_id='indo1319',
parent_id='angl1265', level='language', iso_639_3_code='ang', type='h')

7

Returning to our list of corpora, we can now limit it to languages we’re interested in:

>>> from cltk.data.fetch import FetchCorpus
>>> FetchCorpus('ang').list_corpora
['old_english_text_sacred_texts', 'ang_models_cltk']

As note above, there are in fact only two exclusively Old English corpora available, one of
which is the Anglo-Saxon Poetic Records (here called “Sacred Texts” because that is the
title of the somewhat iffy website now hosting this HTML corpus), the other is CLTK’s
own model tree for Old English. But what this return doesn’t tell you is that CLTK is also
aware of multilingual corpora, one of which includes several Old English prose texts. Use
the “language code” multilingual to discover these:

>>> FetchCorpus('multilingual').list_corpora
['multilingual_treebank_proiel', 'multilingual_treebank_iswoc',
'multilingual_treebank_torot']

The ISWOC treebank is the corpus we want; it contains a modest subset of the Dictionary
of Old English Corpus (DOEC). We may download corpora as follows:

>>> FetchCorpus('multilingual').import_corpus('multilingual_treebank_iswoc')
>>> for i in FetchCorpus('ang').list_corpora:
... FetchCorpus('ang').import_corpus(i)

The latter command tells FetchCorpus() to download each of its Old English corpora in
turn. Here please note the following:

1. Where other programming languages use braces to set off loops and conditionals,
Python relies on spacing (tabbing). The combination of for and the colon in the first
line tells the interpreter that the command is not yet complete, hence the interpreter
prints ellipses rather than the usual prompt, but it is up to us to then indent the
next line of code using the Tab key. When we’re done, we hit return twice so the
interpreter knows the loop is complete.

2. i serves as the variable and can in fact be given any non-reserved name. When we
say for i, we are telling the interpreter to carry out the indented action for each
member of a list; the syntax surrounding i in the next line then tells it what to do
with each value. Note that i in this case lacks quotation marks, unlike the ISWOC
identifier in the first line, because text in quotation marks is interpreted as literal
whereas leaving them out makes clear that it refers to a defined entity (a variable in
this case).

3. Upon completion of the download, the interpreter may keep saying loaded 100%. It
is not stuck; you can simply type your next command.

4. If you run the same for-loop code for a language like Latin, which has a larger set
of corpora linked in CLTK, you may hit an error because one of the repositories is
no longer available at the listed URL. If this is the case, you can try downloading
the corpora one by one to see which one failed.

You will find your downloaded corpora in your cltk_data/ folder, in subfolders named for
their language keys. Whereas CLTK 0.1.x supplied a corpus reader, this feature seems to
have been abandoned with release 1.0. This is unfortunate inasmuch as it results in a lack
of continuity between the experience of downloading and accessing a corpus; the latter will
have to make reference to the location of the downloaded files on disk. You can, however,
point NLTK’s general-purpose corpus reader (not its YCOE reader) to that location and

8

https://legacy.cltk.org/en/latest/corpus_readers.html

use some of the functionality of NLTK. For instructions, see the NLTK textbook under
§2.1.9 Loading Your Own Corpus.

9

https://www.nltk.org/book/ch02.html#loading-your-own-corpus

	Preface
	Lining Up Text
	Default Pipeline Functionality
	Old English
	Middle English
	Latin

	Additional Functionality
	Detailed Output
	Additional Utilities

	Appendix 1: Installation
	Appendix 2: Downloading Corpora

