Document Modelling

P. S. Langeslag

GEORG-AUGUST-UNIVERSITAT
27\ GOTTINGEN tfis oo

One-Hot Encoding

A one-hot vector encodes each token in a document as a sequence of zeroes and one 1, in order
to identify the token in a binary format. The number of digits in the series is equal to the
token length of the document; the position of the 1 indicates the token’s index (i.e. position).

The 1 0 0 0 O
tortoise 0 1 0 0 O
and 0 01 00
the 0 0 0 1 0
hare 0 0 0 0 1

P Advantages: no information is lost; the document can be reliably reconstructed.
P Disadvantages: memory requiments; each document requires its own model.

(See Lane et al. pp. 35-38.)

Bag of Words

A model storing information on each term and its frequency in a document, but discarding
word order (and thus syntax).

>>> from collections import Counter
>>> tokens ['the', 'tortoise', 'and', 'the', 'hare'l]
>>> Counter tokens)

(
Counter({'the 2, 'tortoise': 1, 'and': 1, 'hare': 1})

P Advantages: lower memory requirements; irrelevant words can be eliminated; words can
be sorted by alphabet or frequency
P Disadvantage: loss of word order

(See Lane et al. pp. 38—41.)

Vector Space Model

P A vector is “an ordered list of numbers, or coordinates, in a vector space” (Lane 79).

P When used to represent word counts, each coordinate encodes the frequency of one term,
and every new term thus adds a dimension in vector space (i.e. a new entry in the lexicon).

P For vectors to be comparable, we have to (1) normalize word frequency; and (2) use the
same lexicon for all documents.

P To compare documents, we determine the cosine of the angle between their vectors; this

is arrived at by calculating their dot product (A - B); if the vectors differ in length, this

figure should be normalized by dividing by the product of their lengths: cosf = m

Dot Product

n
The sum of products between corresponding entries in two sequences of numbers: E a;b;
i=1

Thus given a query containing four terms "deofol”, "helle", "ancor", "punorrad"

>>> import numpy

>>> query = numpy.array([1, 1, 1, 1])
>>> textm = numpy.array([1, 1, 1, 1])
>>> textp = numpy.array([1, 1, 0, 0])

the dot product between query and textmwouldbe 1-1+1-1+1-141-1 =4, whereas
textp would come to only 2:

>>> query.dot(p)
2

Thus the dot product allows us to calculate the overlap between bags of words.

Example: A One-Dimensional Vector Space

(Using absolute counts)

>>> query = numpy.array([1])
>>> textm numpy.array([3])
numpy.array([2])

>>> textp

Visio Pauli
Macarius Homily

0 1 2 3
deofol

Example: A Two-Dimensional Vector Space

1 Maéarius I-‘Iomily+] (Using binary switches)
>>> query = numpy.array([1l, 11)
>>> textm = numpy.array([1l, 11)
- >>> textp = numpy.array([1l, 0
S 05| | p py y([1)
<
Visio Pauli
ol N

| | | |
0 0.2 04 06 0.8 1
deofol

Example: A Three-Dimensional Vector Space

1.0 (Using binary switches)

ancor. >>> query = numpy.array([1, 1, 1])
o >>> textm = numpy.array([1, 1, 1])

Example: A Four-Dimensional Vector Space

(Using binary switches)

Given four dimensions "deofol", "helle", "ancor", "punorrad"

query = [1, 1, 1, 1]
textm = [1, 1, 1, 1]
textp = [1, 1, 0, 0]

Zipft’s Law

A word’s frequency in a natural corpus f{7) is inversely
proportional to its rank (7) in the word frequency table.

https://en.wikipedia.org/wiki/File:Zipf_30wiki_en_labels.png

Zipft’s Law

A word’s frequency in a natural corpus f{7) is inversely

proportional to its rank (7) in the word frequency table.

1
T T

where o ~ 1 and 3 ~ 2.7

14 Zipf's law

log(frecuency)

2 =

T

0 1L
0 2 4 6 8 10 12
log(rank)

Figure 1: Frequency/rank log plot for the
first 10 mln words in 30 Wikipedias
(CC-BY-SA Sergio Jimenez)

https://en.wikipedia.org/wiki/File:Zipf_30wiki_en_labels.png

Logarithm

P The logarithm of a number x is the inverse to its exponent.
P It equals the exponent by which the base must be raised to yield x, i.e. b¥ = x

P Adding up the logarithms of two or more numbers yields the logarithm of their product.
This makes logarithmic arithmetic computationally frugal.

P Logarithmic functions are used in NLP to represent word frequencies on a linear scale
(see previous slide).

P Like exponentiation, the logarithm requires that a base b be specified, but for our
p g q P
purposes the chosen base doesn’t matter as long as it’s constant.

P The notation of the logarithm is log, (x) for antilogarithm x to base b.
(Base 10 is assumed if you leave out ;.)

TF-IDF

erm frequency is a term’s frequency in a document, whether in absolute numbers or
P Term frequency is a term’s frequency in a d t, wheth bsol b
divided by its total token count (“normalized term frequency”).

P Inverse document frequency is the total document count divided by the number of
documents containing your term; but to normalize Zipf distribution, we take the
logarithm of this figure.

P TF-IDF is the product of these two numbers, indicating a term’s statistical importance in
a single document as judged by its prevalence in the corpus as a whole.

P (If we carry out all calculations in the service of TF-IDF in log space, we can add and
subtract instead of multiply and divide; this is a convenient feature of logarithms.)

P We can speak of statistical importance, not just frequency, because TF-IDF measures how
exceptional a term’s frequency in a document is as compared against the corpus as a whole.

Bibliography

Bird, Steven, Ewan Klein, and Edward Loper. Natural Language Processing with Python.
Sebastopol, CA: O'Reilly, 2009. https://www.nltk.org/book/.

Eisenstein, Jacob. Introduction to Natural Language Processing. Cambridge, MA: MIT Press,
2019.

Jurafsky, Dan, and James H. Martin. Speech and Language Processing. 3rd ed. draft., 2021.
http://web.stanford.edu/~jurafsky/slp3/.

Lane, Hobson, Cole Howard, and Hannes Hapke. Natural Language Processing in Action:
Understanding, Analyzing, and Generating Text with Python. Shelter Island, NY: Manning,
2019.

Matthes, Eric. Python Crash Course. 2nd ed. San Francisco, CA: No Starch, 2019.

Python Software Foundation. “Python,” October 4, 2020. https://www.python.org/.

Vasiliev, Yuli. Natural Language Processing Using Python and spaCy: A Practical Introduction.
San Francisco: No Starch Press, 2020.

https://www.nltk.org/book/
http://web.stanford.edu/~jurafsky/slp3/
https://www.python.org/

