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One-Hot Encoding

A one-hot vector encodes each token in a document as a sequence of zeroes and one 1, in order
to identify the token in a binary format. The number of digits in the series is equal to the
token length of the document; the position of the 1 indicates the token’s index (i.e. position).

The 1 0 0 0 0
tortoise 0 1 0 0 0
and 0 0 1 0 0
the 0 0 0 1 0
hare 0 0 0 0 1

▶ Advantages: no information is lost; the document can be reliably reconstructed.
▶ Disadvantages: memory requiments; each document requires its own model.

(See Lane et al. pp. 35–38.)



Bag of Words

A model storing information on each term and its frequency in a document, but discarding
word order (and thus syntax).

>>> from collections import Counter
>>> tokens = ['the', 'tortoise', 'and', 'the', 'hare']
>>> Counter(tokens)
Counter({'the': 2, 'tortoise': 1, 'and': 1, 'hare': 1})

▶ Advantages: lower memory requirements; irrelevant words can be eliminated; words can
be sorted by alphabet or frequency

▶ Disadvantage: loss of word order

(See Lane et al. pp. 38–41.)



Vector Space Model

▶ A vector is “an ordered list of numbers, or coordinates, in a vector space” (Lane 79).
▶ When used to represent word counts, each coordinate encodes the frequency of one term,

and every new term thus adds a dimension in vector space (i.e. a new entry in the lexicon).
▶ For vectors to be comparable, we have to (1) normalize word frequency; and (2) use the

same lexicon for all documents.
▶ To compare documents, we determine the cosine of the angle between their vectors; this

is arrived at by calculating their dot product (𝐴 ⋅ 𝐵); if the vectors differ in length, this
figure should be normalized by dividing by the product of their lengths: cos 𝜃 = 𝐴 ⋅ 𝐵

|𝐴||𝐵|



Dot Product

The sum of products between corresponding entries in two sequences of numbers:
𝑛

∑
𝑖=1

𝑎𝑖𝑏𝑖

Thus given a query containing four terms "deofol", "helle", "ancor", "þunorrad"

>>> import numpy
>>> query = numpy.array([1, 1, 1, 1])
>>> textm = numpy.array([1, 1, 1, 1])
>>> textp = numpy.array([1, 1, 0, 0])

the dot product between query and textm would be 1 · 1 + 1 · 1 + 1 · 1 + 1 · 1 = 4, whereas
textp would come to only 2:

>>> query.dot(p)
2

Thus the dot product allows us to calculate the overlap between bags of words.



Example: A One-Dimensional Vector Space

0 1 2 3

Macarius Homily
Visio Pauli

deofol

(Using absolute counts)

>>> query = numpy.array([1])
>>> textm = numpy.array([3])
>>> textp = numpy.array([2])



Example: A Two-Dimensional Vector Space

0 0.2 0.4 0.6 0.8 1
0

0.5

1 Macarius Homily

Visio Pauli

deofol

an
co
r

(Using binary switches)

>>> query = numpy.array([1, 1])
>>> textm = numpy.array([1, 1])
>>> textp = numpy.array([1, 0])



Example: A Three-Dimensional Vector Space

deofol
helle

ancor

Macarius Homily

1.0

1.0

1.0

(Using binary switches)

>>> query = numpy.array([1, 1, 1])
>>> textm = numpy.array([1, 1, 1])



Example: A Four-Dimensional Vector Space

(Using binary switches)

Given four dimensions "deofol", "helle", "ancor", "þunorrad"

query = [1, 1, 1, 1]
textm = [1, 1, 1, 1]
textp = [1, 1, 0, 0]



Zipf ’s Law
A word’s frequency in a natural corpus f(r) is inversely
proportional to its rank (r) in the word frequency table.

𝑓(𝑟) ∝ 1
(𝑟 + 𝛽)𝛼

where 𝛼 ≈ 1 and 𝛽 ≈ 2.7

Figure 1: Frequency/rank log plot for the
first 10 mln words in 30 Wikipedias
(CC-BY-SA Sergio Jimenez)

https://en.wikipedia.org/wiki/File:Zipf_30wiki_en_labels.png


Zipf ’s Law
A word’s frequency in a natural corpus f(r) is inversely
proportional to its rank (r) in the word frequency table.

𝑓(𝑟) ∝ 1
(𝑟 + 𝛽)𝛼

where 𝛼 ≈ 1 and 𝛽 ≈ 2.7

Figure 1: Frequency/rank log plot for the
first 10 mln words in 30 Wikipedias
(CC-BY-SA Sergio Jimenez)

https://en.wikipedia.org/wiki/File:Zipf_30wiki_en_labels.png


Logarithm

▶ The logarithm of a number x is the inverse to its exponent.
▶ It equals the exponent by which the base must be raised to yield x, i.e. 𝑏𝑦 = 𝑥
▶ Adding up the logarithms of two or more numbers yields the logarithm of their product.

This makes logarithmic arithmetic computationally frugal.
▶ Logarithmic functions are used in NLP to represent word frequencies on a linear scale

(see previous slide).
▶ Like exponentiation, the logarithm requires that a base b be specified, but for our

purposes the chosen base doesn’t matter as long as it’s constant.
▶ The notation of the logarithm is 𝑙𝑜𝑔𝑏(𝑥) for antilogarithm x to base b.

(Base 10 is assumed if you leave out 𝑏.)



TF-IDF

▶ Term frequency is a term’s frequency in a document, whether in absolute numbers or
divided by its total token count (“normalized term frequency”).

▶ Inverse document frequency is the total document count divided by the number of
documents containing your term; but to normalize Zipf distribution, we take the
logarithm of this figure.

▶ TF-IDF is the product of these two numbers, indicating a term’s statistical importance in
a single document as judged by its prevalence in the corpus as a whole.

▶ (If we carry out all calculations in the service of TF-IDF in log space, we can add and
subtract instead of multiply and divide; this is a convenient feature of logarithms.)

▶ We can speak of statistical importance, not just frequency, because TF-IDF measures how
exceptional a term’s frequency in a document is as compared against the corpus as a whole.
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