CLTK

P. S. Langeslag

December 1, 2022

Contents
Preface 1
Lining Up Text 1

Default Pipeline Functionality
OldEnglish
Middle English L
Latin e e e e e e

o NN

Additional Functionality
Detailed Output
Additional Processing Functions
Corpus Downloader L

(S, IS, BTSNV N

Preface

This guide was written as required reading for a humanities course on natural language
processing (NLP) to offer more guidance and a lower point of entry than is given in
CLTK’s official demo notebook, let alone in the official documentation.

Lining Up Text

Having discontinued the corpus reader found in 0.1.x releases, CLTK 1.0 expects you to
identify one or more documents directly on disk as input for processing. For the purposes
of our course, a plaintext corpus of Old English homiletic prose is available in the repository
under echoe/. As you won’t know the contents of the corpus off by heart, you may want
to inspect this director with help from the os module:

>>> import os
>>> os.listdir('echoe/")

You can then open and read individual files as follows:

>>> v9file = open('echoe/394.11.txt")
>>> v9 = v9file.read()
>>> yv9

'men da leofestan ...'

https://github.com/cltk/cltk/blob/master/notebooks/CLTK%20Demonstration.ipynb
https://docs.cltk.org/en/latest/

Alternatively, you can use NLTK’s corpus reader as explained in the NLTK textbook:

>>> from nltk.corpus import PlaintextCorpusReader
>>> echoe = PlaintextCorpusReader('echoe', '.*')

You can then list available files as follows:

>>> echoe.fileids()
['018.40.txt', '018.42.txt', '021.27.txt', '021.28.txt', ...]

and access individual files as follows:
>>> v9 = echoe.raw('394.11.txt")

But an advantage of the corpus reader is that you can alternatively prepare the entire corpus
for analysis (just be forewarned that the processing of a substantial corpus will take some
time, and memory):

>>> corpus = echoe.raw()

If you want to analyze a different text or corpus that is not yet in plaintext, you will have
to either parse or strip it first. For instance, you can parse HTML or XML using the
BeautifulSoup module from the bs4 package as follows:

>>> from bs4 import BeautifulSoup

>>> raw = open('/home/username/somefile.html")
>>> soup = BeautifulSoup(raw, 'html.parser')
>>> text = soup.get text()

Alternatively, you can clean up your corpus by other means before loading it in Python.

Default Pipeline Functionality

The functionality shown in the official demo notebook is available off the shelf, with the
important caveat that the demo is centrally focused on Latin and Greek because these
have the most comprehensive pipelines. The present section explains CLTK functionality
available directly within Python at greater length, with a focus on Old English.

Old English

The only CLTK function we normally need to import is cltk.NLP(). We then tie this
NLP to a process variable specifying the language with which we’ll be working. In response,
the interpreter outputs the full list of processes available for that language:

>>> from cltk import NLP

>>> pipeline = NLP(language='ang')

4 CLTK version '1.0.24".

Pipeline for language 'Old English (ca. 450-1100)' (ISO: 'ang'):
"MultilingualTokenizationProcess™, “OldEnglishLemmatizationProcess’,
"0ldEnglishEmbeddingsProcess™, “StopsProcess’, “0ldEnglishNERProcess" .

For Old English, CLTK ships with a language-independent tokenizer and language-
specific stopword and lemma lists. It draws on an external library (fastText) supposedly
with Old English support for word embeddings. Although CLTK also claims to have a
language-specific named-entity-recognition (NER) process, this process appears to be

https://www.nltk.org/book/ch02.html#loading-your-own-corpus
https://github.com/cltk/cltk/blob/master/notebooks/CLTK%20Demonstration.ipynb

essentially empty: unlike in the Latin model, the Old English directory structure lacks a
list of proper names, and it employs a library (spaCy) that has no support for Old English.
What we can expect CLTK to do off the shelf, then, is tokenize, lemmatize, and vector
model, the last of these processes presumably on language-agnostic principles.

CLTK has been set up to run the pipeline with all these processes (the default) or a
hand-culled selection of them, then inspect the results. Thus for instance:

>>> processed = pipeline.analyze(text=v9)
>>> processed.tokens[:12]

['men', 'Ga', 'leofestan', 'we', 'geleornodon', 'on',
'‘godcundum', ‘'gewritum', 'pat', '®aghwylces', 'monnes’,
'sawul']

>>> processed.lemmatal:12]

['mann', 'pba', 'leofestan', 'we', 'geleornodon', 'on',
‘godcundum', ‘'gewrit', 'pat', 'aghwylces', 'monnes',
'sawul']

Note that whenever it fails to identify a lemma, it returns the inflected form as found
(leofestan, geleornodon, etc.)

With Old English, there isn’t much else you can do but lemmatize, but you can ask CLTK
whether a given token is registered as a stopword, which may be of some limited use in
further processing:

>>> processed.words[0].stop
False
>>> processed.words[1].stop
True

Another way of querying data is through the words accessor, which organizes what has
been learned on a per-token basis. For Old English, this means you can access word form
and inferred lemma from a single object.

>>> processed.words[0]
Word(index char start=0, index char stop=3, index token=0,
index_sentence=None, string='men', pos=None, lemma='mann',
stem=None, scansion=None, xpos=None, upos=None,
dependency relation=None, governor=None, features={},
category={}, stop=False, named entity=False, syllables=None,
phonetic transcription=None, definition=None)
>>> for token in processed.words[:3]:

print(token.string, 'is a form of', token.lemma)

men is a form of mann
0a is a form of pa
leofestan is a form of leofestan

The final functionality available for Old English is word embeddings. This may not look
like much when queried directly (try querying processed.embeddings[0]), but these
“vectors” or lists of logarithms store valuable data on each form’s relationships to other
word forms in the corpus. This means that if we process a large enough corpus, we have
access to a great deal of statistically inferred semantic information.

Middle English

Although CLTK claims a Middle English pipeline, it contains no more than a stopword
list, in addition to the universal tokenizer:

>>> pipeline = NLP(language='enm')

&£ CLTK version '1.0.24'.

Pipeline for language 'Middle English' (ISO: ‘'enm'):
"MiddleEnglishTokenizationProcess ™, “StopsProcess’.

Latin

To demonstrate the capabilities of CLTK more fully, we will have to resort to Latin. That
pipeline is demonstrated in the official demonstration notebook, so there is no need to
rehearse it here. For completeness’ sake, here is the pipeline prompt for Latin:

>>> pipeline = NLP(language='lat")

4 CLTK version '1.0.24".

Pipeline for language 'Latin' (ISO: 'lat'):
“LatinNormalizeProcess™, “LatinStanzaProcess,
“LatinEmbeddingsProcess™, “StopsProcess’,
‘LatinNERProcess”, ‘LatinLexiconProcess'.

Additional Functionality

Detailed Output

As we saw above, the Old English lemmatizer as contained in the default pipeline returns
either a headword or, if none is found, the input string. However, the underlying func-
tion has two options with which we may tweak this return: best_guess=False, which
causes it to return all hits rather than just the one it considers the most likely, and re-
turn_frequencies=True, which returns the logarithm of the returned headword’s relative
frequency in the underlying word list. To access this information, we can call the function

directly, bypassing the pipeline:

>>> from cltk.lemmatize.ang import OldEnglishDictionaryLemmatizer as lem
>>> lem.lemmatize token('man')

"man'

>>> lem.lemmatize token('man', return frequencies=True, best guess=False)
[('mann', -6.829400539827225), ('man', -4.832846657953158)]

In the above example, the form “man” may represent either the impersonal pronoun man
“one,” identical in meaning and origin to German man, or it may be the noun mann
“person; man,” similar in meaning to German Mann. If we run the lemmatizer with
default options, all it returns is the likeliest headword, i.e. the pronoun. With the two
custom options, it returns a list of tuples, each of which consists of a headword and the
logarithm of its relative frequency in the word list. As these are all negative logarithms,
whichever is closest to zero is evaluated as the likeliest headword, while absolute zero
means only one match has been found. To evaluate a document as opposed to a single
word form, you'll have to tokenize it first:

>>> tokens = 'MEN da leofestan manad us and myngap peos halige boc pat we \
sien gemyndige ymb ure sawle pearfe'.lower().split()

https://github.com/cltk/cltk/blob/master/notebooks/CLTK%20Demonstration.ipynb

>>> lem.lemmatize(tokens, return frequencies=True, best guess=False)
[[('mann', -6.829400539827225)1, [('pe', -3.109198614584248),

('da', -3.1405210857132895), ('ba', -2.344858341627749),

('se', -2.9011463394704973)1, [1, [1, [('we', -5.037641070599171),
('us', -5.826098430963441)], [('and', -2.8869365088978443)], [1, ...]

Note that with these settings, an input with no hits returns an empty value ([1) with no

frequency data.

Additional Processing Functions

CLTK offers a few language processing functions additional to those integrated into the
pipeline. For Old English, we have access to a syllabifier, an IPA transcription utility, and
a transliterator of Old English runes. These may be used as follows:

>>> from cltk.phonology.ang.transcription import Transcriber

>>> Transcriber.transcribe('habbad &fre anradne geléafan')

'hab:ad @:fre a:nrz:dne jele:avan'

>>> from cltk.phonology.ang.phonology import OldEnglishSyllabifier
>>> syll = 0ldEnglishSyllabifier()

>>> syll('monan"')

['mo', 'nan']

>>> from cltk.phonology.ang.transliteration import Transliterate

>>> Transliterate.transliterate('RFFIPFTAY FX RMNFIPFTNM TPQXME XIBRFPRR)

"romwalus and reumwalus twoegen gibrotheaer'

Please be advised that these utilities are not to be taken as authoritative for the purposes
they were designed to serve. Also please note that the syllabifier only takes a single word
at a time as input.

Corpus Downloader

CLTK has a function FetchCorpus () that links to repositories for a range of premodern
corpora. For Old English, it offers the complete Old English poetic corpus, which it
downloads in HTML format, then converts to JSON so it may be accessed in Python
(though it fails to strip out tags meant to indicate emendations in the print
edition). The other Old English “corpus” on offer is in fact CLTK’s Old English model,
which allows us to explore the package’s processing strategies in isolation from the general
pipeline; but that model is downloaded the first time we run the NLP on an Old English
text, so there is no need to download it separately. More substantial corpora are available
for Latin and Greek.

A full list of all linked corpora may be obtained by issuing

>>> import cltk
>>> cltk.data.fetch.LANGUAGE CORPORA.values()

or, to sort them by language:
>>> cltk.data.fetch.LANGUAGE CORPORA.items()

Both these lists are rather hard to read, however. It may help to print the values one per
line, like so:

>>> print(*cltk.data.fetch.LANGUAGE CORPORA.values(), sep="\n")

or you can narrow down by language. To this end, you'll need the relevant language code.
These are contained in cltk.languages.glottolog.LANGUAGES, though to print them in
an acceptably clean list would require a few lines of code. Instead, it may help to know that
the languages codes used follow the ISO 639-3 standard, with values like the following:

Table 1: Selection of medieval northern European language codes in the
ISO 639-3 standard

Code Language

ang Old English

enm Middle English

gmh Middle High German

goh Old High German

grc Acient Greek

lat Latin

non Old Norse

05X Old Saxon/Old Low German

Alternatively, you may search CLTK’s index of languages using part of a language’s Modern
English name as a keyword string:

>>> cltk.languages.utils.find iso name('english')

['enm', 'ang']

>>> cltk.languages.utils.get lang('ang')

Language(name='01ld English (ca. 450-1100)', glottolog id='oldel238',
latitude=51.06, longitude=-1.31, dates=[], family id='indol1319',

parent _id='angl1265', level='language', iso 639 3 code='ang', type='h")

Returning to our list of corpora, we can now limit it to languages we’re interested in:

>>> from cltk.data.fetch import FetchCorpus
>>> FetchCorpus('ang').list corpora
['old english text sacred texts', 'ang models cltk']

As note above, there are in fact only two exclusively Old English corpora available, one
of which is the Anglo-Saxon Poetic Records (here called “Sacred Texts” because that is
the title of the somewhat suspect website now hosting this HTML corpus), the other is
CLTK’s own model tree for Old English. But what this return doesn’t tell you is that
CLTK is also aware of multilingual corpora, one of which includes several Old English
prose texts. Use the “language code” multilingual to discover these:

>>> FetchCorpus('multilingual').list corpora
['multilingual treebank proiel', 'multilingual treebank iswoc',
'multilingual treebank torot']

The ISWOC treebank is the corpus we want; it contains a modest subset of the Dictionary
of Old English Corpus (DOEC). We may download corpora as follows:

>>> FetchCorpus('multilingual').import corpus('multilingual treebank iswoc')
>>> for i in FetchCorpus('ang').list corpora:
FetchCorpus('ang').import corpus(i)

The latter command tells FetchCorpus() to download each of its Old English corpora
in turn. Please note that if you run the same for-loop code for a language like Latin,
which has a larger set of corpora linked in CLTK, you may hit an error because one of
the repositories is no longer available at the listed URL. If this is the case, you can try
downloading the corpora one by one to see which one failed.

You will find your downloaded corpora in your ~/cltk_data/ folder, in subfolders named
for their language keys. Whereas CLTK 0.1.x supplied a corpus reader, this feature seems
to have been abandoned with release 1.0. This is unfortunate inasmuch as it results in
a lack of continuity between the experience of downloading and accessing a corpus; the
latter will have to make reference to the location of the downloaded files on disk. You
can, however, point NLTK’s general-purpose corpus reader (not its YCOE reader) to that
location and use some of the functionality of NLTK. For instructions, see the NLTK
textbook under §2.1.9 Loading Your Own Corpus.

https://legacy.cltk.org/en/latest/corpus_readers.html
https://www.nltk.org/book/ch02.html#loading-your-own-corpus

	Preface
	Lining Up Text
	Default Pipeline Functionality
	Old English
	Middle English
	Latin

	Additional Functionality
	Detailed Output
	Additional Processing Functions
	Corpus Downloader

